
B4M36ESW: Efficient software

Lecture 13: Virtualization

Michal Sojka
michal.sojka@cvut.cz

May 12, 2025

feedback 1 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 1 ()&issue[description]=Insert your question/comment here.


Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 2 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 2 (Outline)&issue[description]=Insert your question/comment here.


Virtualization basics

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 3 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 3 (Outline)&issue[description]=Insert your question/comment here.


Virtualization basics

Virtualization

Definition: Virtualization of the whole computing platform – the operating system thinks

it runs on real hardware, but the hardware is largely emulated by the hypervisor (HV)

and/or virtual machine monitor (VMM).

Virtual machine (VM) vs. Java VM

Java VM interprets Java byte code and interacts with an operating system

VM executes native (machine) code and interacts with a hypervisor.

VMs used since ’70s, mostly on IBM mainframes

Popek and Goldberg defined requirements for instruction set architecture (ISA)

virtualization in their paper from 1974,

x86 became fully virtualizable in 2005.

More detailed introduction to virtualization (from OSY course):

https://osy.pages.fel.cvut.cz/docs/prednasky/pdf/lekce12_virt.pdf

feedback 4 / 37

https://osy.pages.fel.cvut.cz/docs/prednasky/pdf/lekce12_virt.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 4 (Virtualization)&issue[description]=Insert your question/comment here.


Virtualization basics

Trap-and-emulate

Basic mechanism of virtualization

Unprivileged (VM)

Privileged (HV)

Trap

Emulate

Popek and Goldberg: “All sensitive instructions must be privileged instructions”

Sensitive instruction: Changes global state1 or behaves differently depending on the global

state (e.g. halt, cli or pushf on x86)
Privileged instruction: Their execution in unprivileged mode traps to the privileged mode (to

the hypervisor by means of CPU exception)
on x86 popf, pushf and few other instructions were sensitive but not privileged!

pushf stores all flags to stack including the “global” interrupt flag (IF)

popf sets the IF in privileged mode and ignores it in unprivileged mode (i.e., does not trap)

Hypervisor (HV) emulates the effect of sensitive instructions depending on the VM state, not

the global state.

1
Global state means a state that is common to all running VMs, not local to a single VM. For example, CPU reset signal is global.feedback 5 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 5 (Trap-and-emulate)&issue[description]=Insert your question/comment here.


Virtualization basics

Hypervisor

Privileged code that supervises execution of the VM, i.e. handles traps.

Hypervisor types:

HW

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

Bare-metal hypervisor

Examples: Xen, VMware ESX, ...

Idea: Avoid overheads of the general purpose

OS.

HW

Host OS kernel

Guest

Guest apps

Host apps

Guest OS kernel

Hypervisor

Hosted hypervisor

Examples: KVM, VirtualBox, …

Idea: Why to reinvent the wheel?

The boundary is blurry – many bare-metal hypervisors support native apps too.

feedback 6 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 6 (Hypervisor)&issue[description]=Insert your question/comment here.


Virtualization basics

Virtual Machine Monitor (VMM)

HW

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

VMM

HW

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

VMM 2VMM 1

Software that emulates the HW platform (network,

graphics, storage, …)

Often implemented inside the hypervisor (left) ⇒

people confuse VMM with hypervisors

Today’s platforms are complex (e.g. PC bears 45

years heritage, millions lines of emulation code)

It is more secure to execute the VMM in user mode,

outside of privileged mode (right).

Examples: KVM & qemu.

It was also slower, but NOVA microhypervisor (TU

Dresden) was the first to show that it can be faster.

Modern solutions (e.g. Firecracker) use similar

design principles.
feedback 7 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 7 (Virtual Machine Monitor (VMM))&issue[description]=Insert your question/comment here.


Virtualization basics

Questions

How many privilege levels we need to implement virtualization?

Two are sufficient, but then, every guest system call, page fault etc. traps from the guest app to

the hypervisor, which then arranges the switch to the guest kernel – this is slow.

Hardware assisted virtualization – introducesmore privilege levels (and other features) to make

virtualization faster – see later.

Why is virtualization needed at all? (My personal rant)

To some extent because the design of mainstream operating systems is not up to the current

needs.

Current OSes do not offer sufficient isolation of applications and groups of applications. Many

things such as user permissions, apply implicitly to the whole system.

Microkernel OSes, which solve this problem, were designed in the past without much success.
Now, people are adding “containers” to mainstream OSes, which is difficult and often introduces
security problems.

Making a microkernel from a monolithic kernel2 is more difficult that starting with the microkernel from

scratch.

2https://marc.info/?l=linux-mm&m=154952428103397feedback 8 / 37

https://marc.info/?l=linux-mm&m=154952428103397
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 8 (Questions)&issue[description]=Insert your question/comment here.


Hardware assisted virtualization

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 9 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 9 (Outline)&issue[description]=Insert your question/comment here.


Hardware assisted virtualization

Hardware assisted virtualization

Accelerates virtualized execution

Differences between vendors (Intel, AMD, ARM, …), core principles similar:

More privilege levels (x86 – root/non-root, ARMv8 EL0–3)

HW emulates things faster than SW

Nested paging

IO virtualization

feedback 10 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 10 (Hardware assisted virtualization)&issue[description]=Insert your question/comment here.


Hardware assisted virtualization

Intel VMX

VMX root operation

host rings 0–3

VMX non-root operation

guest rings 0–3

in non-root mode, x86 ISA is fully virtualizable

Transition root→non-root = VM Enter

instructions: vmlaunch, vmresume

Transition non-root→root = VM Exit

instructions: vmresume, vmcall

faults (e.g. I/O)

Guest state

Host state

VM-execution control fields

VM-exit control fields

VM-entry control fields

VM-exit information fields

VMCS (up to 4 KiB – e.g. 1024 B)

VM Control Structure (VMCS)

Data structure in memory that controls VMX execution (managed by the hypervisor/VMM)

(Re)stores host/guest state

“Large structure” ⇒ VM Enter/Exit has overhead

The overhead depends on what is (re)stored from/to VMCS (configurable)

feedback 11 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 11 (Intel VMX)&issue[description]=Insert your question/comment here.


Hardware assisted virtualization » Nested paging

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 12 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 12 (Outline)&issue[description]=Insert your question/comment here.


Hardware assisted virtualization » Nested paging

Nested paging

Host physical
(system physical)

Guest virtualHost virtual
Guest physical

Guest page tables
Host page tables

(nested page tables)

HW Hypervisor Guest

PDPT PD PT

Address spaces

feedback 13 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 13 (Nested paging)&issue[description]=Insert your question/comment here.


Hardware assisted virtualization » Nested paging

Memory access overhead

TLB misses and page faults are more expensive inside VM!

Standard page walks vs. page walk in a VM (4-level page tables):

nL4
1

nL2
3

nL3
2

nL1
4

nL4
6

nL2
8

nL3
7

nL1
9

nL4
11

nL2
13

nL3
12

nL1
14

nL4
16

nL2
18

nL3
17

nL1
19

nL4
21

nL2
23

nL3
22

Nested page table
gVA

gL3
10

gL2
15

gL1
20

gL4
5

SPA

gCR3

gVA[11:0]

gVA[20:12]

gVA[29:21]

gVA[38:30]

gVA[47:39]

nCR3

TLB
Entry 
Value

VA

L3
(PDP)

L2
(PD)

L1
(PT)

L4
(PML4)

VA[11:0]

VA[20:12]

VA[29:21]

VA[38:30]

VA[47:39]

512GB

1GB

2MB

4KB

PA

(a) (b)

GPA

nL1
24

SPA SPA SPA SPA GPA

G
u

est p
ag

e tab
le

TLB
Entry
Value

gL1

gL2

gL3

gL4

gPA

nL4 nL3 nL2 nL1 G

CR3

PA

Figure 1. (a) Standard x86 page walk. (b) Two-dimensional page walk. Italics indicate column and row names; notations such as {nL1,gPA} and {G,gL1}
indicate entries in the indicated columns and rows.
Source: Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008. Accelerating two-dimensional page walks for virtualized systems. SIGOPS
Oper. Syst. Rev. 42, 2 (March 2008), 26-35. DOI: https://doi.org/10.1145/1353535.1346286

feedback 14 / 37

https://doi.org/10.1145/1353535.1346286
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 14 (Memory access overhead)&issue[description]=Insert your question/comment here.


Hardware assisted virtualization » Nested paging

Page walk in a VM
4-level page tables (64-bit systems)

2D page walk – translation of guest virtual address to system physical address:

Access to each level of the guest page table has to be translated to system physical addresses via

nested page table.

TLB miss in virtualized systems results in 24 memory accesses (in the worst case; non-virtualized

systems need only 4 memory accesses).

If we are lucky, some of these memory accesses are served from a cache rather than from slow main

memory.

Performance drop up to 15% (Intel), 38% (AMD)3

Mitigation: Tagged TLBs (HW feature of modern CPUs)

No need to flush TLBs on process (or VM) switches (good)

Applications share TLBs with the hypervisor and VMM (bad)

Recommendation: Use huge pages (2MB) if possible

Bigger pages ⇒ less TLBs for the same amount of memory

Note: Older implementation of huge pages in Linux had performance problems and people

recommended not using them. Now, the situation is different.

3Ulrich Drepper, The Cost of Virtualization, ACM Queue, Vol. 6 No. 1 – 2008feedback 15 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 15 (Page walk in a VM)&issue[description]=Insert your question/comment here.


Example: Mini VMM with KVM

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 16 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 16 (Outline)&issue[description]=Insert your question/comment here.


Example: Mini VMM with KVM

KVM

Linux-based hosted hypervisor

Abstracts hardware-assisted virtualization of different architectures behind

ioctl-based API
We will develop a miniature user-space VMM

Simplest hardware to virtualize: serial port

1 Setup the VM’s memory

2 Load the code to execute

3 Run the VM

4 Handle the VM Exits and emulate serial port

5 Goto 3

See also https://lwn.net/Articles/658511/

feedback 17 / 37

https://lwn.net/Articles/658511/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 17 (KVM)&issue[description]=Insert your question/comment here.


I/O virtualization

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 18 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 18 (Outline)&issue[description]=Insert your question/comment here.


I/O virtualization » How do modern Network Interface Cards (NIC) work

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 19 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 19 (Outline)&issue[description]=Insert your question/comment here.


I/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & Transmit operation

NIC Registers
Buffer descriptors

(in memory)

Packet data

(in memory)

TX head
TX tail
RX head
RX tail

...

...

addr
size, flags

TX operation:

1 Write packet data

2 Fill in an empty buffer descriptor

3 Notify the NIC by writing TX tail reg

feedback 20 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 20 (Network Interface Card & Transmit operation)&issue[description]=Insert your question/comment here.


I/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & Receive operation

NIC Registers
Buffer descriptors

(in memory)

Packet data

(in memory)

TX head
TX tail
RX head
RX tail

...

...

addr
size, flags

RX operation:

1 Allocate packet buffers

and update buffer descriptors

2 Update RX head/tail regs

3 On packet reception, NIC stores the data tomemory and generates an interrupt
feedback 21 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 21 (Network Interface Card & Receive operation)&issue[description]=Insert your question/comment here.


I/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & Scatter-Gather DMA

NIC Registers
Buffer descriptors

(in memory)

Headres &
Packet data

TX head
TX tail
RX head
RX tail

...

...

addr[2]
size[2], flags

Scatter-Gather DMA:

NIC composes the final packet from several pieces scattered in memory

Typically header (from OS) and data (from app)

This avoids unnecessary copy of packet data to make space for headers.

feedback 22 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 22 (Network Interface Card & Scatter-Gather DMA)&issue[description]=Insert your question/comment here.


I/O virtualization » Device emulation

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 23 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 23 (Outline)&issue[description]=Insert your question/comment here.


I/O virtualization » Device emulation

NIC device emulation

Trap accesses to NIC registers (memory-mapped IO)

Upon write to TX tail, VMM iterates over queued buffers and sends them via real NIC

(e.g. by using BSD sockets API and SOCK_RAW)

Properties: Multiple packets in the buffer descriptor table can be sent during a single

VM Exit (⇒ less overhead)

Reception works similarly

Not all hardware is “that nice” to virtualize

Several VM Exits per TX or RX
Registers that must be trapped are intermixed with non-sensitive (e.g. read-only) registers
in a single page

⇒ Unnecessary VM Exits for some register accesses

VMM must emulate not only RX/TX, but also management

Link negotiation, configuration, …

More complex compared to RX/TX

feedback 24 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 24 (NIC device emulation)&issue[description]=Insert your question/comment here.


I/O virtualization » Virtio

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 25 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 25 (Outline)&issue[description]=Insert your question/comment here.


I/O virtualization » Virtio

Virtio

It is neither easy nor necessary to emulate a real NIC

Emulation of TX, RX and simple configuration (e.g. MAC address) is sufficient

Most modern I/O HW (disc, net) looks similar. Why to implement different ring-buffer

formats?

Virtio4

Universal ring-buffer-based communication between the VM and the HV

Used for network, storage, serial line, …

PCI-based probing & configuration – VMs can easily discover virtio devices

4R. Russell, virtio: Towards a De-Facto Standard For Virtual I/O Devices, ACM SIGOPS Operating Systems

Review, 2008
feedback 26 / 37

http://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
http://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 26 (Virtio)&issue[description]=Insert your question/comment here.


I/O virtualization » PCI pass-through

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 27 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 27 (Outline)&issue[description]=Insert your question/comment here.


I/O virtualization » PCI pass-through

PCI pass-through

Even virtio needs one VM Exit per (a batch of) TX operation(s)

If we don’t want VM Exits, we may want to give a VM exclusive access to the NIC

Few problems to solve…

feedback 28 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 28 (PCI pass-through)&issue[description]=Insert your question/comment here.


I/O virtualization » PCI pass-through

PCI pass-through graphically

Host physical

Guest virtual

Guest page tables
Host page tables

Hypervisor Guest

PDPT PD PT

Chipset/
PCI Root
Complex

CPU

CPU
interconnect

MemoryMemory bus

Device
PCIe

Host virtual
Guest physical

Addres 0

NIC regs

NIC regs

NIC buffs

NIC buffs

NIC overwrites
this memory

HV

NIC overwrites
hypervisor

Device page tables

Device

Device

NIC regs

NIC buffs

feedback 29 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 29 (PCI pass-through graphically)&issue[description]=Insert your question/comment here.


I/O virtualization » PCI pass-through

PCI pass-through

Problems:

1 Virtual address space (see previous slide)

Security: One VM could configure the NIC to read or write memory of other VM or even the

hypervisor!

2 Device interrupts: Host does not know how to acknowledge (silence) the interrupt – it has
no driver for the device

Host injects the interrupt to the VM and returns from the IRQ handler

Host is interrupted again, because the VM didn’t have chance to run and ack the interrupt

⇒ infinite loop

Solution: Hardware support for direct use of devices in VMs

1 IOMMU (AMD), VT-d (Intel), SMMU (ARM)
2 Mask individual sources of interrupts without understanding the device

Hard with (parallel) PCI, where interrupt lines are shared between devices

Possible with Message Signaled Interrupts (MSI), PCI-express

feedback 30 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 30 (PCI pass-through)&issue[description]=Insert your question/comment here.


I/O virtualization » Single-Root I/O Virtualization

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 31 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 31 (Outline)&issue[description]=Insert your question/comment here.


I/O virtualization » Single-Root I/O Virtualization

Single-Root I/O Virtualization (SR-IOV)

PCI pass-through is nice, but I have more VMs that want to communicate…

Without PCI pass-through, each VM has an emulated NIC, VMM multiplexes the real NIC between VMs in software

What about performing the multiplexing in hardware?

NIC
PF VF VF VF VF VF VF VF VF

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

VMM 2VMM 1

Guest 3

Guest apps
Guest OS kernel

VMM 3

SR-IOV

Besides “classic” physical function (PF), NIC implements several virtual functions (VFs)

Each VF provides simplified PCI interface and its own RX/TX ring buffers

feedback 32 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 32 (Single-Root I/O Virtualization (SR-IOV))&issue[description]=Insert your question/comment here.


I/O virtualization » Inter-VM networking

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 33 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 33 (Outline)&issue[description]=Insert your question/comment here.


I/O virtualization » Inter-VM networking

Efficient inter-VM networking
Software-based Ethernet switch

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

VMM 2VMM 1

SW switch
Shared mem
with VMMs

Packet stored in VM’s memory

VMM notified (VM Exit) e.g. via virtio’s kick()

VMM notifies the SW switch via standard IPC mechanism
Switch does memcpy() of the packet from source VM to destination VM (into dest NIC ring buffer)

Note: The switch can see (mmap()) all VMs memory – the same as for real hardware NIC

Dest VMM notifies the VM (injects an interrupt)

feedback 34 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 34 (Efficient inter-VM networking)&issue[description]=Insert your question/comment here.


I/O virtualization » Inter-VM networking

Optimizations

Overheads of traditional Ethernet device emulation:

OS networking stack is responsible for splitting application data to packets (e.g. TCP

segmentation) and adding appropriate headers

VMM sees many small packets and the switch does many small memcpy()s

Receiver’s networking stack strips packet headers and combines the payload to larger

data chunks for application.

TCP segmentation is not necessary for Inter-VM communication (overhead)!

Modern NICs support TCP Segmentation Offload (TSO)/Large Receive Offload (LRO):

Segmentation/reconstruction is done in hardware.

If the virtual NIC supports TSO/LRO, Inter-VM communication is much faster, because

whole TCP segments (in contrast to small packets) can be copied at once.

feedback 35 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 35 (Optimizations)&issue[description]=Insert your question/comment here.


Summary

Outline

1 Virtualization basics

2 Hardware assisted virtualization

Nested paging

3 Example: Mini VMM with KVM

4 I/O virtualization

How do modern Network Interface Cards (NIC) work

Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

5 Summary

feedback 36 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 36 (Outline)&issue[description]=Insert your question/comment here.


Summary

Summary

Virtualization is just “another layer of indirection” and as such it adds overheads.

The overheads exist even with hardware-assisted virtualization!

It is useful to know where the overheads are and how to mitigate them:

Memory access: Huge pages

Efficient NIC model: e.g. virtio

More HW features: SR-IOV

feedback 37 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 37 (Summary)&issue[description]=Insert your question/comment here.

	Virtualization basics
	Hardware assisted virtualization
	Nested paging

	Example: Mini VMM with KVM
	I/O virtualization
	How do modern Network Interface Cards (NIC) work
	Device emulation
	Virtio
	PCI pass-through
	Single-Root I/O Virtualization
	Inter-VM networking

	Summary

