feedback

B4M36ESW: Efficient software

Lecture 13: Virtualization

Michal Sojka

michal.sojka@cvut.cz

CTU

UNIVERSITY

et

May 12, 2025

1/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 1 ()&issue[description]=Insert your question/comment here.

Virtualization basics

Hardware assisted virtualization
m Nested paging

Example: Mini VMM with KVM

/O virtualization
m How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/0O Virtualization
m Inter-VM networking

Summary

feedback 2/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 2 (Outline)&issue[description]=Insert your question/comment here.

Virtualization basics

Outline

Virtualization basics

feedback 3/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 3 (Outline)&issue[description]=Insert your question/comment here.

Virtualization basics

Virtualization

m Definition: Virtualization of the whole computing platform - the operating system thinks
it runs on real hardware, but the hardware is largely emulated by the hypervisor (HV)
and/or virtual machine monitor (VMM).

m Virtual machine (VM) vs. Java VM

m Java VM interprets Java byte code and interacts with an operating system
m VM executes native (machine) code and interacts with a hypervisor.
m VMs used since '70s, mostly on IBM mainframes
m Popek and Goldberg defined requirements for instruction set architecture (ISA)
virtualization in their paper from 1974,
m x86 became fully virtualizable in 2005.

m More detailed introduction to virtualization (from OSY course):

https://osy.pages.fel.cvut.cz/docs/prednasky/pdf/lekcel2_virt.pdf

feedback 4/37

https://osy.pages.fel.cvut.cz/docs/prednasky/pdf/lekce12_virt.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 4 (Virtualization)&issue[description]=Insert your question/comment here.

Virtualization basics

Trap-and-emulate

m Basic mechanism of virtualization
Privileged (HV)
Trap

Unprivileged (VM)

m Popek and Goldberg: “All sensitive instructions must be privileged instructions”
® Sensitive instruction: Changes global state' or behaves differently depending on the global
state (e.g. halt, cli or pushf on x86)
m Privileged instruction: Their execution in unprivileged mode traps to the privileged mode (to

the hypervisor by means of CPU exception)
B on x86 popf, pushf and few other instructions were sensitive but not privileged!

m pushf stores all flags to stack including the “global” interrupt flag (IF)
m popf sets the IF in privileged mode and ignores it in unprivileged mode (i.e., does not trap)

m Hypervisor (HV) emulates the effect of sensitive instructions depending on the VM state, not
the global state.

feedba!:@lobal state means a state that is common to all running VMs, not local to a single VM. For example, CPU reset signal is global. 5/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 5 (Trap-and-emulate)&issue[description]=Insert your question/comment here.

Virtualization basics

Hypervisor

m Privileged code that supervises execution of the VM, i.e. handles traps.
m Hypervisor types:

Guest apps Guest apps

Host apps

Guest apps

Guest 1 Guest 2

Guest

Bare-metal hypervisor Hosted hypervisor
m Examples: Xen, VMware ESX; ... m Examples: KVM, VirtualBox, ...
m |dea: Avoid overheads of the general purpose m Idea: Why to reinvent the wheel?
Os.

m The boundary is blurry - many bare-metal hypervisors support native apps too.
feedback 6/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 6 (Hypervisor)&issue[description]=Insert your question/comment here.

Virtualization basics

Virtual Machine Monitor (VMM)

O
- - - Ee!lpp.s Guest apps
[Guestoskens] | || | [auestostame]

Guest apps

Guest apps

Guest 1 Guest 2
Guest 1 Guest 2

m Software that emulates the HW platform (network, m [t is more secure to execute the VMM in user mode,
graphics, storage, ...) outside of privileged mode (right).

m Often implemented inside the hypervisor (left) = m Examples: KVM & gemu.
people confuse VMM with hypervisors = It was also slower, but NOVA microhypervisor (TU

m Today’s platforms are complex (e.g. PC bears 45 Dresden) was the first to show that it can be faster.
years heritage, millions lines of emulation code) m Modern solutions (e.g. Firecracker) use similar

design principles.
feedback 7137

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 7 (Virtual Machine Monitor (VMM))&issue[description]=Insert your question/comment here.

Virtualization basics

Questions

m How many privilege levels we need to implement virtualization?

m Two are sufficient, but then, every guest system call, page fault etc. traps from the guest app to
the hypervisor, which then arranges the switch to the guest kernel - this is slow.

m Hardware assisted virtualization - introduces more privilege levels (and other features) to make
virtualization faster - see later.

m Why is virtualization needed at all? (My personal rant)

m To some extent because the design of mainstream operating systems is not up to the current
needs.

m Current OSes do not offer sufficient isolation of applications and groups of applications. Many
things such as user permissions, apply implicitly to the whole system.

m Microkernel OSes, which solve this problem, were designed in the past without much success.

m Now, people are adding “containers” to mainstream OSes, which is difficult and often introduces
security problems.

B Making a microkernel from a monolithic kernel? is more difficult that starting with the microkernel from
scratch.

feedbazchttps ://marc.info/?1=1inux-mm&m=154952428103397 8/37

https://marc.info/?l=linux-mm&m=154952428103397
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 8 (Questions)&issue[description]=Insert your question/comment here.

Hardware assisted virtualization

Outline

Hardware assisted virtualization
m Nested paging

feedback 9/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 9 (Outline)&issue[description]=Insert your question/comment here.

Hardware assisted virtualization

Hardware assisted virtualization

m Accelerates virtualized execution
m Differences between vendors (Intel, AMD, ARM, ...), core principles similar:
m More privilege levels (x86 - root/non-root, ARMv8 EL0-3)
m HW emulates things faster than SW
m Nested paging
m O virtualization

feedback 10/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 10 (Hardware assisted virtualization)&issue[description]=Insert your question/comment here.

Hardware assisted virtualization

Intel VMX

= VMX root operation VMCS (up to 4 KiB - e.g. 1024 B)

® host rings 0-3 VM-execution control fields
m VMX non-root operation

m guestrings 0-3

m in non-root mode, x86 ISA is fully virtualizable Guest state
m Transition root—non-root = VM Enter

m instructions: vmlaunch, vmresume

Host state

VM-exit information fields

m Transition non-root—root = VM Exit VM-entry control fields
m instructions: vmresume, vmcall
= faults (e.g. I/O) VM-exit control fields

m VM Control Structure (VMCS)
m Data structure in memory that controls VMX execution (managed by the hypervisor/VMM)
m (Re)stores host/guest state
m “Large structure” = VM Enter/Exit has overhead
m The overhead depends on what is (re)stored from/to VMCS (configurable)

feedback 11/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 11 (Intel VMX)&issue[description]=Insert your question/comment here.

Hardware assisted virtualization » Nested paging

Outline

Hardware assisted virtualization
m Nested paging

feedback 12/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 12 (Outline)&issue[description]=Insert your question/comment here.

Hardware assisted virtualization » Nested paging

Nested paging

Host ertual Guest virtual

Address spaces

Host physica e
(system physigal) —

a e tables
/{ﬁested page tables)

Guest page tables

Hypervisor Guest
feedback 13/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 13 (Nested paging)&issue[description]=Insert your question/comment here.

Hardware assisted virtualization » Nested paging

Memory access overhead

m TLB misses and page faults are more expensive inside VM!
m Standard page walks vs. page walk in a VM (4-level page tables):

VA CR3 9vA gCR3 | Nested page table ,
h ' t i
' -
VA[41:39]§I L, |PA gLy gVA[47:39] é(_;fA SPA, SPA SPA, SPA| gL, G_|PA
512GB PML4) | 5 !
H J

oLy gVA[JB:Jn]‘LL n;., 9 @ 9 .E
o ftl B -®-®-® {5
ol @ @) @5,
L
gpa Lovarial é_ @ @ @ _"_B SPA

(a) (b)

Figure 1. (a) Standard x86 page walk. (b) Two-dimensional page walk. Italics indicate column and row names; notations such as {nLy,gPA} and {G,gL1}

indicate entries in the indicated columns and rows.

Source: Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008. Accelerating two-dimensional page walks for virtualized systems. SIGOPS
; O(%er. kSyst. Rev. 42, 2 (March 2008), 26-35. DOI: https://doi.org/10.1145/1353535. 1346286 14/37
eedbacl

N
I
I
I
I
I
I
I
I
I
I
'
I
I
'
'
'
'
'
'
'
'
I
'
I
'
'
'
'
I
I
'
I
|
I
I
I
I
I
I
!

a|qe) abed jsang

https://doi.org/10.1145/1353535.1346286
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 14 (Memory access overhead)&issue[description]=Insert your question/comment here.

Hardware assisted virtualization » Nested paging

Page walk ina VM

4-level page tables (64-bit systems)

m 2D page walk - translation of guest virtual address to system physical address:
m Access to each level of the guest page table has to be translated to system physical addresses via
nested page table.
= TLB miss in virtualized systems results in 24 memory accesses (in the worst case; non-virtualized
systems need only 4 memory accesses).
m If we are lucky, some of these memory accesses are served from a cache rather than from slow main
memory.

m Performance drop up to 15% (Intel), 38% (AMD)3
m Mitigation: Tagged TLBs (HW feature of modern CPUs)
m No need to flush TLBs on process (or VM) switches (good)
m Applications share TLBs with the hypervisor and VMM (bad)
m Recommendation: Use huge pages (2 MB) if possible
m Bigger pages = less TLBs for the same amount of memory
= Note: Older implementation of huge pages in Linux had performance problems and people
recommended not using them. Now, the situation is different.

reedbaztIrich Drepper, The Cost of Virtualization, ACM Queue, Vol. 6 No. 1 - 2008 15/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 15 (Page walk in a VM)&issue[description]=Insert your question/comment here.

Example: Mini VMM with KVM
Outline

Example: Mini VMM with KVM

feedback 16/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 16 (Outline)&issue[description]=Insert your question/comment here.

Example: Mini VMM with KVM

KVM

m Linux-based hosted hypervisor
m Abstracts hardware-assisted virtualization of different architectures behind
ioctl-based API
m We will develop a miniature user-space VMM
m Simplest hardware to virtualize: serial port

Setup the VM’s memory

Load the code to execute

Run the VM

Handle the VM Exits and emulate serial port
Goto 3

m Seealsohttps://lwun.net/Articles/658511/

feedback 17/37

https://lwn.net/Articles/658511/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 17 (KVM)&issue[description]=Insert your question/comment here.

1/O virtualization
Outline

/O virtualization
m How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/0O Virtualization
Inter-VM networking

feedback 18/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 18 (Outline)&issue[description]=Insert your question/comment here.

1/O virtualization » How do modern Network Interface Cards (NIC) work

Outline

/O virtualization
m How do modern Network Interface Cards (NIC) work

feedback 19/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 19 (Outline)&issue[description]=Insert your question/comment here.

1/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & Transmit operation

NIC Registers Packet data
Buffer descriptors (in memory)
(in memory)
TX head —
X tail \\ addr
RX head size, flags 7
RX tail
~N

TX operation:
Write packet data
Fill in an empty buffer descriptor
Notify the NIC by writing TX tail reg

feedback 20/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 20 (Network Interface Card & Transmit operation)&issue[description]=Insert your question/comment here.

1/O virtualization » How do modern Network Interface Cards (NIC) work
Network Interface Card & Receive operation

NIC Registers Packet data
Buffer descriptors (in memory)

(in memory)

TX head —_\

TXtail T B

RX head size, flags
RX tail

~N

RX operation:

Allocate packet buffers
and update buffer descriptors
Update RX head/tail regs

f kOn packet reception, NIC stores the data to memory and generates an interrupt

21/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 21 (Network Interface Card & Receive operation)&issue[description]=Insert your question/comment here.

1/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & Scatter-Gather DMA

NIC Registers Headres &
Buffer descriptors Packet data
(in memory)
TX head —
TX tail _\ T
RX head size[2], ﬂag?
RX tail
N

Scatter-Gather DMA:
m NIC composes the final packet from several pieces scattered in memory
m Typically header (from OS) and data (from app)

m This avoids unnecessary copy of packet data to make space for headers.
feedback

22/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 22 (Network Interface Card & Scatter-Gather DMA)&issue[description]=Insert your question/comment here.

1/O virtualization » Device emulation

Outline

/O virtualization

m Device emulation

feedback 23/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 23 (Outline)&issue[description]=Insert your question/comment here.

1/O virtualization » Device emulation

NIC device emulation

m Trap accesses to NIC registers (memory-mapped 10)

m Upon write to TX tail, VMM iterates over queued buffers and sends them via real NIC
(e.g. by using BSD sockets APl and SOCK_RAW)

m Properties: Multiple packets in the buffer descriptor table can be sent during a single
VM Exit (= less overhead)

m Reception works similarly

m Not all hardware is “that nice” to virtualize
m Several VM Exits per TX or RX
m Registers that must be trapped are intermixed with non-sensitive (e.g. read-only) registers
in a single page
B = Unnecessary VM Exits for some register accesses
m VMM must emulate not only RX/TX, but also management
m Link negotiation, configuration, ...
m More complex compared to RX/TX
feedback 24/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 24 (NIC device emulation)&issue[description]=Insert your question/comment here.

1/O virtualization » Virtio

Outline

/O virtualization

m Virtio

feedback 25/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 25 (Outline)&issue[description]=Insert your question/comment here.

1/O virtualization » Virtio

\ilgife

m ltis neither easy nor necessary to emulate a real NIC
m Emulation of TX, RX and simple configuration (e.g. MAC address) is sufficient

m Most modern I/O HW (disc, net) looks similar. Why to implement different ring-buffer
formats?

m Virtio*
m Universal ring-buffer-based communication between the VM and the HV
m Used for network, storage, serial line, ...
m PCl-based probing & configuration - VMs can easily discover virtio devices

4R. Russell, virtio: Towards a De-Facto Standard For Virtual I/0 Devices, ACM SIGOPS Operating Systems

Review, 2008
feedback 26/37

http://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
http://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 26 (Virtio)&issue[description]=Insert your question/comment here.

1/O virtualization » PCI pass-through

Outline

/O virtualization

m PCI pass-through

feedback 27/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 27 (Outline)&issue[description]=Insert your question/comment here.

1/O virtualization » PCI pass-through

PCI pass-through

m Even virtio needs one VM Exit per (a batch of) TX operation(s)
m If we don’t want VM Exits, we may want to give a VM exclusive access to the NIC
m Few problems to solve...

feedback 28/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 28 (PCI pass-through)&issue[description]=Insert your question/comment here.

1/O virtualization » PCI pass-through

PCI pass-through graphically

Device Host virtual Gues i
Guest physical Suest virtual
NIC regs NIC regs
NIC overwrites Host physical R
hypervisor, Guest page tables
Device page tab t page tables
= EE[E
NIC buffs NG overwtes NIC buffs D
this memory
NIC buffs|
Addres 0
Device Hypervisor Guest
Memory bus
. CPU
pcle | Chipset/ |.
Device PCI Root finiterconnect cPU
Complex
feedback

29/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 29 (PCI pass-through graphically)&issue[description]=Insert your question/comment here.

1/O virtualization » PCI pass-through

PCI pass-through

m Problems:
Virtual address space (see previous slide)

m Security: One VM could configure the NIC to read or write memory of other VM or even the
hypervisor!

Device interrupts: Host does not know how to acknowledge (silence) the interrupt - it has
no driver for the device

B Host injects the interrupt to the VM and returns from the IRQ handler
B Host is interrupted again, because the VM didn’t have chance to run and ack the interrupt
B = infinite loop

m Solution: Hardware support for direct use of devices in VMs

IOMMU (AMD), VT-d (Intel), SMMU (ARM)
Mask individual sources of interrupts without understanding the device

m Hard with (parallel) PCI, where interrupt lines are shared between devices
B Possible with Message Signaled Interrupts (MSI), PCl-express

feedback 30/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 30 (PCI pass-through)&issue[description]=Insert your question/comment here.

1/O virtualization » Single-Root I/O Virtualization

Outline

/O virtualization

m Single-Root I/O Virtualization

feedback 31/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 31 (Outline)&issue[description]=Insert your question/comment here.

1/O virtualization » Single-Root I/O Virtualization

Single-Root I/O Virtualization (SR-IOV)

m PClI pass-through is nice, but | have more VMs that want to communicate...
m Without PCI pass-through, each VM has an emulated NIC, VMM multiplexes the real NIC between VMs in software
m What about performing the multiplexing in hardware?

Guest apps Guest apps Guest apps

Guest 3

—— 77

m Besides “classic” physical function (PF), NIC implements several virtual functions (VFs)
m Each VF provides simplified PCl interface and its own RX/TX ring buffers

feedback 32/37

m SR-I0OV

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 32 (Single-Root I/O Virtualization (SR-IOV))&issue[description]=Insert your question/comment here.

1/O virtualization » Inter-VM networking

Outline

/O virtualization

m Inter-VM networking

feedback 33/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 33 (Outline)&issue[description]=Insert your question/comment here.

1/O virtualization » Inter-VM networking

Efficient inter-VM networking

Software-based Ethernet switch

Guest apps Guest apps

m Packet stored in VM’s memory

= VMM notified (VM Exit) e.g. via virtio’s kick()

m VMM notifies the SW switch via standard IPC mechanism

m Switch does memcpy () of the packet from source VM to destination VM (into dest NIC ring buffer)
m Note: The switch can see (mmap ()) all VMs memory - the same as for real hardware NIC

m Dest VMM notifies the VM (injects an interrupt)

feedback 34/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 34 (Efficient inter-VM networking)&issue[description]=Insert your question/comment here.

1/O virtualization » Inter-VM networking

Optimizations

m Overheads of traditional Ethernet device emulation:
m OS networking stack is responsible for splitting application data to packets (e.g. TCP
segmentation) and adding appropriate headers
m VMM sees many small packets and the switch does many small memcpy()s
m Receiver’s networking stack strips packet headers and combines the payload to larger
data chunks for application.

m TCP segmentation is not necessary for Inter-VM communication (overhead)!

m Modern NICs support TCP Segmentation Offioad (TSO)/Large Receive Offioad (LRO):
Segmentation/reconstruction is done in hardware.

m If the virtual NIC supports TSO/LRO, Inter-VM communication is much faster, because
whole TCP segments (in contrast to small packets) can be copied at once.

feedback 35/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 35 (Optimizations)&issue[description]=Insert your question/comment here.

Summary

Outline

Summary

feedback 36/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 36 (Outline)&issue[description]=Insert your question/comment here.

Summary
Summary

m Virtualization is just “another layer of indirection” and as such it adds overheads.
m The overheads exist even with hardware-assisted virtualization!

m It is useful to know where the overheads are and how to mitigate them:

m Memory access: Huge pages
m Efficient NIC model: e.g. virtio
m More HW features: SR-I0V

feedback 37/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture virtualization, slide 37 (Summary)&issue[description]=Insert your question/comment here.

	Virtualization basics
	Hardware assisted virtualization
	Nested paging

	Example: Mini VMM with KVM
	I/O virtualization
	How do modern Network Interface Cards (NIC) work
	Device emulation
	Virtio
	PCI pass-through
	Single-Root I/O Virtualization
	Inter-VM networking

	Summary

