
B4M36ESW: Efficient software

Lecture 6: Data structure serialization, Remote Procedure Calls

Michal Sojka
michal.sojka@cvut.cz

June 23, 2025

feedback 1 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 1 ()&issue[description]=Insert your question/comment here.

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 2 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 2 (Outline)&issue[description]=Insert your question/comment here.

Introduction

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 3 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 3 (Outline)&issue[description]=Insert your question/comment here.

Introduction

Communication between programs

Over network
Communication protocol (e.g. over TCP or HTTP)

Structured data → serialization (JSON, protobuf, …)
Remote Procedure Call (RPC)

1 Serialize the procedure name and arguments

2 Send the request and wait for a response

3 Deserialize the reponse

Remote Method Invocation (RMI) – almost the same as RPC

HTTP-based API – conceptually similar

On local host
Single address space (threads)

Data structures in memory

Language type system helps you to avoid mistakes!

Different address spaces (processes)
Same as “over network”

Ideally zero-copy via shared memory

In Linux: shm_open(...) and mmap()
feedback 4 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 4 (Communication between programs)&issue[description]=Insert your question/comment here.

Less efficient data serialization

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 5 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 5 (Outline)&issue[description]=Insert your question/comment here.

Less efficient data serialization » XML

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 6 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 6 (Outline)&issue[description]=Insert your question/comment here.

Less efficient data serialization » XML

XML

eXtensible Markup Language

<employees>
<employee>

<firstName>John</firstName> <lastName>Doe</lastName>
</employee>
<employee>

<firstName>Anna</firstName> <lastName>Smith</lastName>
</employee>
<employee>

<firstName>Peter</firstName> <lastName>Jones</lastName>
</employee>

</employees>

Very high overhead (both size and computation)

Complex parser

feedback 7 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 7 (XML)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 8 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 8 (Outline)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

JSON

JavaScript Object Notation

{"employees":[
{ "firstName":"John", "lastName":"Doe" },
{ "firstName":"Anna", "lastName":"Smith" },
{ "firstName":"Peter", "lastName":"Jones" }

]}
lower overhead, simpler parser

feedback 9 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 9 (JSON)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

json-c parser
https://github.com/json-c/json-c

#include <json.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

struct json_tokener *tok = json_tokener_new();
char buf[1024*1024];
struct json_object *jobj;

FILE *f = fopen("test.json", "r");

do {
size_t len = fread(buf, 1, sizeof(buf), f);
jobj = json_tokener_parse_ex(tok, buf, len);

} while (json_tokener_get_error(tok) == json_tokener_continue);
fclose(f);
return 0;

}
feedback 10 / 42

https://github.com/json-c/json-c
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 10 (json-c parser)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

Profiling json-c
47 MB JSON file

perf stat ./bench-json-c
Performance counter stats for './bench-json-c':

3001.802390 task-clock (msec) # 0.974 CPUs utilized
412 context-switches # 0.137 K/sec
5 cpu-migrations # 0.002 K/sec

478,891 page-faults # 0.160 M/sec
9,368,533,705 cycles # 3.121 GHz
3,377,028,216 stalled-cycles-frontend # 36.05% frontend cycles idle
14,910,459,852 instructions # 1.59 insn per cycle

0.23 stalled cycles per insn
3,144,829,442 branches # 1047.647 M/sec

31,808,151 branch-misses # 1.01% of all branches

3.082290868 seconds time elapsed

perf record --freq 10000 -e cycles ./bench-json-c
21.28% bench-json-c bench-json-c [.] json_tokener_parse_ex
10.67% bench-json-c bench-json-c [.] _int_malloc
9.28% bench-json-c bench-json-c [.] _IO_vfscanf_internal
4.30% bench-json-c bench-json-c [.] __libc_calloc
3.37% bench-json-c bench-json-c [.] ____strtod_l_internal
3.30% bench-json-c bench-json-c [.] __memset_sse2_unaligned_erms
3.05% bench-json-c [kernel.kallsyms] [k] clear_page_c_e
2.60% bench-json-c [kernel.kallsyms] [k] page_fault

feedback 11 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 11 (Profiling json-c)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

Where is time spent in json_tokener_parse_ex?

Run perf report and let it annotate the function
It shows C code intermixed with assembly and the percentage of profiling samples for

each instruction

| while (isspace((int)c)) {
0.21 | movsbq %dl,%rax
0.07 | testb $0x20,0x1(%rcx,%rax,2)
7.08 | ↓ je 361
0.29 | xchg %ax,%ax

| if ((!ADVANCE_CHAR(str, tok)) || (!PEEK_CHAR(c, tok)))
0.02 | 330: mov 0x20(%rbx),%eax

feedback 12 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 12 (Where is time spent in \texttt {json_tokener_parse_ex}?)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

JSON benchmark
https://github.com/miloyip/nativejson-benchmark

feedback 13 / 42

https://github.com/miloyip/nativejson-benchmark
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 13 (JSON benchmark)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

Trying RapidJSON

It’s C++ ⇒ nicer to read

syntax

bench-rapidjson.cpp→

#include <rapidjson/document.h>
#include <rapidjson/filereadstream.h>
using namespace rapidjson;

int main(int argc, char *argv[]) {
FILE* fp = fopen("test.json", "r");
char readBuffer[1024*1024];
FileReadStream is(fp, readBuffer, sizeof(readBuffer));
Document d;
d.ParseStream(is);
fclose(fp);
return 0;

}perf stat bench-rapidjson
Performance counter stats for './bench-rapidjson':

389.890403 task-clock (msec) # 0.998 CPUs utilized
12 context-switches # 0.031 K/sec
0 cpu-migrations # 0.000 K/sec

43,392 page-faults # 0.111 M/sec
1,106,686,422 cycles # 2.838 GHz
206,781,432 stalled-cycles-frontend # 18.68% frontend cycles idle

2,467,762,722 instructions # 2.23 insn per cycle
0.08 stalled cycles per insn

593,437,567 branches # 1522.063 M/sec
61,403 branch-misses # 0.01% of all branches

0.390790908 seconds time elapsed
feedback 14 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 14 (Trying RapidJSON)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

What about spaces?

perf record/report
23.66% bench-rapidjson [.] rapidjson::GenericReader<...>::ParseString<0u, ra...
22.43% bench-rapidjson [.] rapidjson::GenericReader<...>::ParseValue<0u, rap...
18.94% bench-rapidjson [.] rapidjson::GenericReader<...>::ParseNumber<0u, ra...
11.66% bench-rapidjson [.] rapidjson::SkipWhitespace<rapidjson::FileReadStream>
5.70% libc-2.24.so [.] __memmove_sse2_unaligned_erms
2.75% bench-rapidjson [.] rapidjson::GenericDocument<rapidjson::UTF8<char>, rapidjson::MemoryPoolAllocator<rapidjson::CrtAllocator>, rapidjso
1.96% [kernel.kallsyms] [k] page_fault
1.68% [kernel.kallsyms] [k] clear_page_c_e

perf annotate rapidjson::GenericReader<...>::ParseString...
| Ch c = is.Peek();
| if (RAPIDJSON_UNLIKELY(c == '\\')) { // Escape

12.22 | 96: cmp $0x5c,%r14b
| ↓ je 178
| TEncoding::Encode(os, codepoint);
| }
| else
| RAPIDJSON_PARSE_ERROR(kParseErrorStringEscapeInvalid, escapeOffset);
| }
| else if (RAPIDJSON_UNLIKELY(c == '"')) { // Closing double quote

6.01 | cmp $0x22,%r14b
| ↓ je 200
| is.Take();
| os.Put('\0'); // null-terminate the string
| return;
| }

What is RAPIDJSON_UNLIKELY?

Branch predition hint (see __builtin_expect() in gcc manual)
feedback 15 / 42

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#index-_005f_005fbuiltin_005fexpect
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 15 (What about spaces?)&issue[description]=Insert your question/comment here.

Faster alternative (C/C++)

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 16 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 16 (Outline)&issue[description]=Insert your question/comment here.

Faster alternative (C/C++)

Raw memory

Sending/receiving directly the content of memory:

struct data {
char flag;
long int data;
char info[3];

};

void sendData(struct data &d) {
send(sock, &d, sizeof(d));

}
void recvData(struct data &d) {

recv(sock, &d, sizeof(d));
}

0
4
8

flag

data
info

0
4
8

flag

data
info

LSB MSB

LSBMSB

0
4

12

flag

data

info

LSB

MSB
8

16
20

32bit system, little endian

32bit system, big endian

64bit system, little endian

feedback 17 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 17 (Raw memory)&issue[description]=Insert your question/comment here.

Faster alternative (C/C++)

Raw memory
Problems & solutions

int doesn’t have fixed size ⇒ #include <stdint.h> ⇒ int32_t
endianing ⇒ #include <endian.h> ⇒ htole32() etc.
(host to little-endian 32 bits)

padding ⇒ __attribute__((__packed__))

struct __attribute__ ((__packed__)) data {
char flag;
int32_t data;
char info[3];

};

void recvData(struct data &d) {
struct data dd;
recv(sock, &dd, sizeof(dd));
d = dd;
// deserialization
d.data = le32toh(dd.data); // little-endian 32b. to host

}

feedback 18 / 42

0
4

flag

info
LSB

MSB
data

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 18 (Raw memory)&issue[description]=Insert your question/comment here.

Faster alternative (C/C++)

Raw memory
Properties

Blazingly fast, but inflexible

The receive side must know the format of data

What if the sender uses newer version of the data structure than the receiver?

e.g. a field added/removed, type changed

Versioning of the protocol

Whenever you design a communication protocol, always include a version number (or

feature flags) to allow older and newer versions to coexist. It saves you some pain when

upgrading your software, especially in the cloud.

feedback 19 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 19 (Raw memory)&issue[description]=Insert your question/comment here.

Data serialization “frameworks”

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 20 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 20 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » CORBA

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 21 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 21 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » CORBA

Common Object Request Broker Architecture (CORBA)

Language independent “RPC framework” from 1990

Interface Description Language (IDL)

Automatic generation of (de)serialization code (IDL compiler)

Description of the data structure is not normally sent with the data

CORBA is not very popular today, perhaps because of its complexity and difficulty of

using parts of it (such as CDR – see later) independently

Many of its core technologies/mechanisms were designed correctly and a lot of people

reinvent the wheel today.

feedback 22 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 22 (Common Object Request Broker Architecture (CORBA))&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » CORBA

Interface Description Language (IDL)

Called “schema” in other frameworks

Defines only data types and interfaces

IDL compiler generates corresponding definitions in target language as well as conversion

code to/from the Common Data Representation (CDR) form.

Example

module Finance {
typedef sequence<string> StringSeq;
struct AccountDetails {

string name;
StringSeq address;
long account_number;
double current_balance;

};
exception insufficientFunds { };
interface Account {

void deposit(in double amount);
void withdraw(in double amount) raises(insufficientFunds);
readonly attribute AccountDetails details;

};
};

feedback 23 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 23 (Interface Description Language (IDL))&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » CORBA

Common Data Representation (CDR)

Defines “wire” representation of data (as it appears on network)

Most today’s serialization schemes converge to something similar

Endian

Data is sent in sender’s endian

Message header contains information about the used endian

⇒ No expensive endian conversion between similar hosts

Data padding as in memory – efficient (de)serialization

TypeCodes – CDR representation of any IDL data type

Allows to send Any data type (TypeCode + actual data) and the receiver can reconstruct it

feedback 24 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 24 (Common Data Representation (CDR))&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 25 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 25 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Google Protocol Buffers (protobuf)
https://developers.google.com/protocol-buffers/

Data description – conceptually similar to IDL

Automatic code generation

Partial description of data sent with the data
Less problems with protocol versioning

Easy to use API
Supports multiple languages: Java, Python, C++, C#, …
syntax = "proto3";

message SearchRequest {
string query = 1;
int32 page_number = 2;
int32 result_per_page = 3;

}

Numbered “tags” uniquely identify fields

Tags also help with maintaining backward compatibility (versioning)
feedback 26 / 42

https://developers.google.com/protocol-buffers/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 26 (Google Protocol Buffers (protobuf))&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Wire encoding

Key-value pairs

Key = the tag (field number) + type information

⇒ unknown keys (and their values) can always be skipped

Type Meaning Used For

0 Varint int32, int64, uint32, uint64, sint32, sint64, bool, enum

1 64-bit fixed64, sfixed64, double

2 Length-delimited string, bytes, embedded messages, packed repeated fields

3 Start group groups (deprecated)

4 End group groups (deprecated)

5 32-bit fixed32, sfixed32, float

Key encoding: (field_number << 3) | wire_type
Stored as Varint (see next slide)

feedback 27 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 27 (Wire encoding)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Wire encoding – Varint

Encoded in variable number of bytes, small numbers take only one byte

7th bit is 1 in all but last byte.

Bits 0–6 store the value.
Examples:

9 = 00001001b → 00001001b

300 = 100101100b → 10101100 00000010

Signed integers (sint) use Zigzag encoding (i.e., numbers close to zero are encoded
into a single byte):

n is encoded as (n << 1) ^ (n >> 31)
0 → 0

–1 → 1

1 → 2

–2 → 3

Varint represents a trade-off between size of the encoded data and speed of

encoding/decoding.
feedback 28 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 28 (Wire encoding -- Varint)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Wire encoding – String and Message

Varint-encoded length + bytes of string/message

Example

message Test2 {
required string b = 6;

}
b = “testing”

Encoded as (hex):

32 07 74 65 73 74 69 6e 67

32h = (6 << 3) | 2 // 6 = tag, 2 = length delimited
07h = length

feedback 29 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 29 (Wire encoding -- String and Message)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Wire encoding – repeated fields

message Test4 {
repeated int32 d = 4 [packed=true];

}
0x22 // tag (field number 4, wire type 2)
0x06 // payload size (6 bytes)
0x03 // first element (varint 3)
0x8E 0x02 // second element (varint 270)
0x9E 0xA7 0x05 // third element (varint 86942)
When reading, the field can be skipped without decoding all values.

feedback 30 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 30 (Wire encoding -- repeated fields)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Message streaming

Parsing code does not know where a message begins and ends

Solution: Put the length of the message before it

feedback 31 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 31 (Message streaming)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Protobuf example – OpenStreetMap
https://wiki.openstreetmap.org/wiki/PBF_Format

message Node {
required sint64 id = 1;
// Parallel arrays.
repeated uint32 keys = 2 [packed = true]; // String IDs.
repeated uint32 vals = 3 [packed = true]; // String IDs.
optional Info info = 4; // May be omitted in omitmeta
required sint64 lat = 8;
required sint64 lon = 9;

}

message Way {
required int64 id = 1;
// Parallel arrays.
repeated uint32 keys = 2 [packed = true];
repeated uint32 vals = 3 [packed = true];

optional Info info = 4;

repeated sint64 refs = 8 [packed = true]; // DELTA coded
}

Czech republic: PBF – 670MB, XML – 16 GB
feedback 32 / 42

Node 25
Node 42

Node 43

Node 24

Way

key1-val1

key2-val2

key3-val3

key1-val1

key2-val2

https://wiki.openstreetmap.org/wiki/PBF_Format
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 32 (Protobuf example -- OpenStreetMap)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

From .proto to C++
addressbook.proto

package tutorial;

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

}

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

}

repeated PhoneNumber phones = 4;
}

message AddressBook {
repeated Person people = 1;

}

mycode.cpp
#include <iostream>
#include <fstream>
#include <string>
#include "addressbook.pb.h" // generated from .proto
using namespace std;

// Iterates though all people in the AddressBook and prints info about them.
void ListPeople(const tutorial::AddressBook& address_book) {

for (int i = 0; i < address_book.person_size(); i++) {
const tutorial::Person& person = address_book.person(i);

cout << "Person ID: " << person.id() << endl;
cout << " Name: " << person.name() << endl;
if (person.has_email()) {

cout << " E-mail address: " << person.email() << endl;
}

for (int j = 0; j < person.phone_size(); j++) {
const tutorial::Person::PhoneNumber& phone_number = person.phones(j);

switch (phone_number.type()) {
case tutorial::Person::MOBILE:

cout << " Mobile phone #: ";
break;

case tutorial::Person::HOME:
cout << " Home phone #: ";
break;

case tutorial::Person::WORK:
cout << " Work phone #: ";
break;

}
cout << phone_number.number() << endl;

}
}

}
feedback 33 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 33 (From .proto to C++)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 34 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 34 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

Cap’n’proto
https://capnproto.org/

Developed by the original author of protobuf

Some years later – lessons learnt from protobuf

Very efficient for communication via shared memory

(e.g. between different languages)

Still usable over network

No de/encoding needed – serialized form is usable as a native form (unless packing is
used)

⇒ It’s possible to just mmap a file to memory to work with the data.

feedback 35 / 42

https://capnproto.org/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 35 (Cap’n’proto)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

Cap’n’proto encoding

Bool: 1 bit

Integers: Little endian, native size, aligned to multiple of their size (padding)

Default values: always encoded as zero, i.e. enc = val ^ default
̂ = XOR
Optional packing = getting rid of zero bytes

Set bits in the first byte indicate which of the following 8 bytes are non-zero. The nonzero

bytes follow.
unpacked (hex): 08 00 00 00 03 00 02 00 19 00 00 00 aa 01 00 00
packed (hex): 51 08 03 02 31 19 aa 01

Structures: Pointer (= index) to data and sub-structures

feedback 36 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 36 (Cap'n'proto encoding)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

Message + structure encoding
https://capnproto.org/encoding.html

struct Person {
id @0 :UInt32; # 0xab
name @1 :Text; # Alice
email @2 :Text; # alice@example.com
phones @3 :List(PhoneNumber);

struct PhoneNumber {
number @0 :Text; # "555-1212"
type @1 :Type; # mobile

enum Type {
mobile @0;
home @1;
work @2;

}
}

employment :union {
unemployed @4 :Void;
employer @5 :Text;
school @6 :Text; # MIT
selfEmployed @7 :Void;

}
}

00000000 00 00 00 00 10 00 00 00 00 00 00 00 01 00 04 00 |................|

00000010 ab 00 00 00 02 00 00 00 0d 00 00 00 32 00 00 00 |............2...|

00000020 0d 00 00 00 92 00 00 00 15 00 00 00 17 00 00 00 |................|

00000030 25 00 00 00 22 00 00 00 41 6c 69 63 65 00 00 00 |%..."...Alice...|

00000040 61 6c 69 63 65 40 65 78 61 6d 70 6c 65 2e 63 6f |alice@example.co|

00000050 6d 00 00 00 00 00 00 00 04 00 00 00 01 00 01 00 |m...............|

00000060 00 00 00 00 00 00 00 00 01 00 00 00 4a 00 00 00 |............J...|

00000070 35 35 35 2d 31 32 31 32 00 00 00 00 00 00 00 00 |555-1212........|

00000080 4d 49 54 00 00 00 00 00 |MIT.....|

00000088

Message Struct Name Email Phones Employment

Tree-like data structure. Allows skipping of unknown or unwanted

data.

Packing allows getting rid of all 83 zero bytes above and adds 17

more bytes.

feedback 37 / 42

https://capnproto.org/encoding.html
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 37 (Message + structure encoding)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

From .capnp to C++
addressbook.capnp

struct Person {
id @0 :UInt32;
name @1 :Text;
email @2 :Text;
phones @3 :List(PhoneNumber);

struct PhoneNumber {
number @0 :Text;
type @1 :Type;

enum Type {
mobile @0;
home @1;
work @2;

}
}

employment :union {
unemployed @4 :Void;
employer @5 :Text;
school @6 :Text;
selfEmployed @7 :Void;
We assume that a person is only one of these.

}
}

struct AddressBook {
people @0 :List(Person);

}

mycode.cpp
#include "addressbook.capnp.h"
#include <capnp/message.h>
#include <capnp/serialize-packed.h>
#include <iostream>

void printAddressBook(int fd) {
::capnp::PackedFdMessageReader message(fd);

AddressBook::Reader addressBook = message.getRoot<AddressBook>();

for (Person::Reader person : addressBook.getPeople()) {
std::cout << person.getName().cStr() << ": "

<< person.getEmail().cStr() << std::endl;
for (Person::PhoneNumber::Reader phone: person.getPhones()) {

const char* typeName = "UNKNOWN";
switch (phone.getType()) {

case Person::PhoneNumber::Type::MOBILE: typeName = "mobile"; break;
case Person::PhoneNumber::Type::HOME: typeName = "home"; break;
case Person::PhoneNumber::Type::WORK: typeName = "work"; break;

}
std::cout << " " << typeName << " phone: "

<< phone.getNumber().cStr() << std::endl;
}
Person::Employment::Reader employment = person.getEmployment();
switch (employment.which()) {

case Person::Employment::UNEMPLOYED:
std::cout << " unemployed" << std::endl;
break;

case Person::Employment::EMPLOYER:
std::cout << " employer: "

<< employment.getEmployer().cStr() << std::endl;
break;

case Person::Employment::SCHOOL:
std::cout << " student at: "

<< employment.getSchool().cStr() << std::endl;
break;

case Person::Employment::SELF_EMPLOYED:
std::cout << " self-employed" << std::endl;
break;

}
}

}

feedback 38 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 38 (From .capnp to C++)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

FlatBuffers
https://flatbuffers.dev/

Similar to Cap’n’Proto (access to serialized data without parsing/unpacking)

From Google

feedback 39 / 42

https://flatbuffers.dev/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 39 (FlatBuffers)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Apache Avro

Outline

1 Introduction

2 Less efficient data serialization

XML

JSON

3 Faster alternative (C/C++)

4 Data serialization “frameworks”

CORBA

Protocol Buffers (protobuf)

Cap’n’proto

Apache Avro

feedback 40 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 40 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Apache Avro

Apache Avro

Schema in JSON

Schema handshake after connection establishment

No tags in data, because the schema is known to all parties

File storage

Compression

Blocks allowing skip through the data without deseralizing them

feedback 41 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 41 (Apache Avro)&issue[description]=Insert your question/comment here.

Conclusion

Conclusion

Data serialization format trade-offs:

Human readability/ease of data manipulation

Data size

(De)serialization speed

Select the right technology for your needs

feedback 42 / 42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 42 (Conclusion)&issue[description]=Insert your question/comment here.

	Introduction
	Less efficient data serialization
	XML
	JSON

	Faster alternative (C/C++)
	Data serialization ``frameworks''
	CORBA
	Protocol Buffers (protobuf)
	Cap'n'proto
	Apache Avro

	Conclusion

