feedback

B4M36ESW: Efficient software

Lecture 6: Data structure serialization, Remote Procedure Calls

Michal Sojka

michal.sojka@cvut.cz

q_;—%(
|

June 23, 2025

1/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 1 ()&issue[description]=Insert your question/comment here.

Introduction

Less efficient data serialization
m XML
= JSON

Faster alternative (C/C++)

”

Data serialization “frameworks
m CORBA
m Protocol Buffers (protobuf)
m Cap’n’proto
m Apache Avro

feedback 2/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 2 (Outline)&issue[description]=Insert your question/comment here.

Introduction

Outline

Introduction

feedback 3/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 3 (Outline)&issue[description]=Insert your question/comment here.

Introduction

Communication between programs

m Over network
m Communication protocol (e.g. over TCP or HTTP)
m Structured data — serialization (JSON, protobuf, ...)
m Remote Procedure Call (RPC)
Serialize the procedure name and arguments
Send the request and wait for a response
Deserialize the reponse
m Remote Method Invocation (RMI) - almost the same as RPC
m HTTP-based API - conceptually similar
m On local host
m Single address space (threads)
m Data structures in memory
B Language type system helps you to avoid mistakes!
m Different address spaces (processes)
B Same as “over network”
m Ideally zero-copy via shared memory
In Linux: shm_open (. ..) and mmap ()
feedback 4/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 4 (Communication between programs)&issue[description]=Insert your question/comment here.

Less efficient data serialization
Outline

Less efficient data serialization
m XML
= JSON

feedback 5/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 5 (Outline)&issue[description]=Insert your question/comment here.

Less efficient data serialization » XML

Outline

Less efficient data serialization
m XML

feedback 6/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 6 (Outline)&issue[description]=Insert your question/comment here.

Less efficient data serialization » XML

XML

m eXtensible Markup Language
<employees>
<employee>
<firstName>John</firstName> <lastName>Doe</lastName>
</employee>
<employee>
<firstName>Anna</firstName> <lastName>Smith</lastName>
</employee>
<employee>
<firstName>Peter</firstName> <lastName>Jones</lastName>
</employee>
</employees>

m Very high overhead (both size and computation)
m Complex parser

feedback 7142

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 7 (XML)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

Outline

Less efficient data serialization

= JSON

feedback 8/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 8 (Outline)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

JSON

m JavaScript Object Notation
{"employees": [
{ "firstName":"John", "lastName":"Doe" },
{ "firstName":"Anna", "lastName":"Smith" 7},
{ "firstName":"Peter", "lastName":"Jones" }

1}
m lower overhead, simpler parser

feedback 9/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 9 (JSON)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

json-c parser

https://github.com/json-c/json-c

#include <json.h>
#include <stdio.h>

int main(int argc, char *argv[])

{
struct json_tokener *tok = json_tokener_new();
char buf [1024%1024];
struct json_object *jobj;
FILE *f = fopen("test.json", "r");
do {
size_t len = fread(buf, 1, sizeof(buf), f);
jobj = json_tokener_parse_ex(tok, buf, len);
} while (json_tokener_get_error(tok) == json_tokener_continue);
fclose(f);
return O;
¥

feedback 10/42

https://github.com/json-c/json-c
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 10 (json-c parser)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

Profiling json-c
7 MB JSON file

B perf stat ./bench-json-c

Performance counter stats for './bench-json-c':

3001.802390 task-clock (msec) # 0.974 CPUs utilized
412 context-switches # 0.137 K/sec
5 cpu-migrations # 0.002 K/sec
478,891 page-faults # 0.160 M/sec
9,368,533,705 cycles # 3.121 GHz
3,377,028,216 stalled-cycles-frontend # 36.05% frontend cycles idle
14,910,459,852 instructions # 1.59 insn per cycle
0.23 stalled cycles per insn
3,144,829,442 branches # 1047.647 M/sec
31,808,151 branch-misses # 1.01% of all branches

3.082290868 seconds time elapsed

B perf record --freq 10000 -e cycles ./bench-json-c

21.28% bench-json-c bench-json-c [.] json_tokener_parse_ex
10.67% Dbench-json-c bench-json-c [.] _int_malloc
9.28% bench-json-c bench-json-c [.] _I0_vfscanf_internal
4.30% bench-json-c bench-json-c [.] __libc_calloc
3.37) bench-json-c bench-json-c [.] ____strtod_l_internal
3.30% bench-json-c bench-json-c [.] __memset_sse2_unaligned_erms
3.05% bench-json-c [kernel.kallsyms] [k] clear_page_c_e
2.60% bench-json-c [kernel.kallsyms] [k] page_fault

feedback 11/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 11 (Profiling json-c)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

Where is time spent in json_tokener parse_ex?

m Runperf report and let it annotate the function

m It shows C code intermixed with assembly and the percentage of profiling samples for
each instruction

feedback

330:

while (isspace((int)c)) {

movsbq %dl,%rax
testb $0x20,0x1(%rcx,%rax,2)

4 je
xchg

mov

361

%ax ,hax

if ((!'ADVANCE_CHAR(str, tok)) || (!PEEK_CHAR(c, tok)))
0x20(%rbx) ,%eax

12/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 12 (Where is time spent in \texttt {json_tokener_parse_ex}?)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

JSON benchmark

https://github.com/miloyip/nativejson-be

strdup (C)

RapidJSON (C++)
RapidJSON_Insitu (C++)
gason (C++11)

ujsondc (C)

sajson (C++)
RapidJSON_AutoUTF (C++)
RapidJ SON_FullPrec (C++)
Scheredom json.h (C)
mikeando/FastJson (C++)
¢JSON (C)

ujson (C++)

taocppljson (C++11)
udp/json-parser (C)

V8 (C++)

ccanfjson (C)

Nlohmann (C++11)
SimpleJSON (C++)
Configuru (C++11)
jsoncons (C++)

Parson (C)

dropbox/json11 (C++11)
JVar (C++)

YAJL (C)

Vinenthz/libjson (C)

Jansson (C)

Qt (C++)

C++ REST SDK (C++11)
feedback json-c (C)

Dina ICAN 711\

13/42

https://github.com/miloyip/nativejson-benchmark
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 13 (JSON benchmark)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

Trying RapidJSON

y .
| It S C++ = nicer to read #include <rapidjson/document.h>
#include <rapidjson/filereadstream.h>
Syntax using namespace rapidjson;
[benCh-rapldjSOnCpp — int main(int argc, char *argv[]) {

FILE* fp = fopen("test.json", "r");

char readBuffer[1024%1024];

FileReadStream is(fp, readBuffer, sizeof (readBuffer));
Document d;

d.ParseStream(is);

fclose(fp);
return O;
m perf stat bench-rapidjson '
Performance counter stats for './bench-rapidjson':
389.890403 task-clock (msec) # 0.998 CPUs utilized
12 context-switches # 0.031 K/sec
0 cpu-migrations # 0.000 K/sec
43,392 page-faults # 0.111 M/sec
1,106,686,422 cycles # 2.838 GHz
206,781,432 stalled-cycles-frontend # 18.68% frontend cycles idle
2,467,762,722 instructions # 2.23 insn per cycle
0.08 stalled cycles per insn
593,437,567 branches # 1522.063 M/sec
61,403 branch-misses # 0.01% of all branches

0.390790908 seconds time elapsed
feedback 14/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 14 (Trying RapidJSON)&issue[description]=Insert your question/comment here.

Less efficient data serialization » JSON

What abo

m perf record/report
23.66% bench-rapidjson
22.437, bench-rapidjson
18.94% bench-rapidjson
11.66% bench-rapidjson

5.70% libc-2.24.so0
2.75% bench-rapidjson
1.96% [kernel.kallsyms] [k] page_fault
1.68% [kernel.kallsyms] [k] clear_page_c_e

m perf annotate rapidjson::GenericReader<...>::ParseString...

Ch ¢ = is.Peek();

: :GenericReader<. :ParseString<Ou, ra..
GenericReader<. ParseValue<Ou, rap...
GenericReader<. ParseNumber<Ou, ra.
.Sk1pWh1tespace<rap1dJson F11eReadStream>

__memmove_sse2_unaligned_erms

[alalalalalel
oL LLL

|
| if (RAPIDJSON_UNLIKELY(c == '\\')) { // Escape
12.22 | 96: cmp $0x5¢, %r1db
| 4 je 178
| TEncoding: :Encode(os, codepoint);
| }
| else
| RAPIDJSON_PARSE_ERROR (kParseErrorStringEscapelnvalid, escapeOffset);
| }
| else if (RAPIDJSON_UNLIKELY(c == '"')) { // Closing double quote
6.01 | cmp $0x22,%r14b
| L je 200
| is.Take();
| os.Put('\0'); // null-terminate the string
| return;
| }

m What is RAPIDJSON_UNLIKELY?
Branch predition hint (see __builtin_expect () in gcc manual)

feedback

rapidjson::GenericDocument<rapidjson: :UTF8<char>, rapidjson::MemoryPoolAllocator<rapidjson:

:CrtAllocator>, rapidjs

15/42

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#index-_005f_005fbuiltin_005fexpect
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 15 (What about spaces?)&issue[description]=Insert your question/comment here.

Faster alternative (C/C++)

Outline

Faster alternative (C/C++)

feedback o

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 16 (Outline)&issue[description]=Insert your question/comment here.

Faster alternative (C/C++)

Raw memory

32bit system, little endian

offlag|f :
m Sending/receiving directly the content of memory: 4 |LSB , data M5B
8 info |
struct data {
char flag; 32bit system, big endian
long int data; 0 ﬂagl : :
char infol[3]; 4 (MSB data LSB
¥; 8 info |
void sendData(struct data &d) { 64bitsy5tem"m'ee"‘.“a"
send(sock, &d, sizeof(d)); 0 | flag |
} 4 :
void recvData(struct data &d) { 8 [LSB q
i . ata
. recv(sock, &d, sizeof(d)); 12 MSB
16 info |
20 : : :
feedback . . . 7142

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 17 (Raw memory)&issue[description]=Insert your question/comment here.

Faster al

ternative (C/C++)

Raw memory
Problems & solutions

feedback

int doesn’t have fixed size = #include <stdint.h>=> int32_t
endianing = #include <endian.h>= htole32() efc.

(host to little-endian 32 bits)

padding = __attribute__((__packed__))

struct __attribute__ ((__packed__)) data {
char flag;
int32_t data;

char info[3];

¥ 0 | flag | LSB data

4 i MSB info

void recvData(struct data &d4) {

struct data dd;

recv(sock, &dd, sizeof(dd));

d = dd;

// deserialization

d.data = le32toh(dd.data); // little-endian 32b. to host
}

18/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 18 (Raw memory)&issue[description]=Insert your question/comment here.

Faster alternative (C/C++)

Raw memory
Properties

m Blazingly fast, but inflexible
m The receive side must know the format of data
m What if the sender uses newer version of the data structure than the receiver?
B e.g. afield added/removed, type changed

Versioning of the protocol

Whenever you design a communication protocol, always include a version number (or
feature flags) to allow older and newer versions to coexist. It saves you some pain when
upgrading your software, especially in the cloud.

feedback 19/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 19 (Raw memory)&issue[description]=Insert your question/comment here.

Data serialization “frameworks”
Outline

Data serialization “frameworks”
m CORBA
m Protocol Buffers (protobuf)
m Cap’n’proto
m Apache Avro

feedback 20/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 20 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » CORBA

Outline

Data serialization “frameworks”
m CORBA

feedback 21/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 21 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » CORBA

Common Object Request Broker Architecture (CORBA)

m Language independent “RPC framework” from 1990

m Interface Description Language (IDL)

m Automatic generation of (de)serialization code (IDL compiler)

m Description of the data structure is not normally sent with the data

m CORBA is not very popular today, perhaps because of its complexity and difficulty of
using parts of it (such as CDR - see later) independently

m Many of its core technologies/mechanisms were designed correctly and a lot of people
reinvent the wheel today.

'

feedback 22/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 22 (Common Object Request Broker Architecture (CORBA))&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » CORBA

Interface Description Language (IDL)

m Called “schema” in other frameworks
m Defines only data types and interfaces

m IDL compiler generates corresponding definitions in target language as well as conversion
code to/from the Common Data Representation (CDR) form.

module Finance {
typedef sequence<string> StringSeq;
struct AccountDetails {

string name;

StringSeq address;

long account_number;
double current_balance;

};

exception insufficientFunds { };

interface Account {
void deposit(in double amount);
void withdraw(in double amount) raises(insufficientFunds);
readonly attribute AccountDetails details;

e

};

feedback 23/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 23 (Interface Description Language (IDL))&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » CORBA

Common Data Representation (CDR)

Defines “wire” representation of data (as it appears on network)

Most today’s serialization schemes converge to something similar
Endian
m Data is sent in sender’s endian
m Message header contains information about the used endian
m = No expensive endian conversion between similar hosts
Data padding as in memory - efficient (de)serialization
TypeCodes - CDR representation of any IDL data type
m Allows to send Any data type (TypeCode + actual data) and the receiver can reconstruct it

feedback 24/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 24 (Common Data Representation (CDR))&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Outline

Data serialization “frameworks”

m Protocol Buffers (protobuf)

feedback 25/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 25 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Google Protocol Buffers (protobuf)

https://developers.google.com/protocol-buffers/

m Data description - conceptually similar to IDL
m Automatic code generation
m Partial description of data sent with the data
m Less problems with protocol versioning
m Easy to use API
m Supports multiple languages: Java, Python, C++, C#, ...

syntax = "proto3";

message SearchRequest {
string query = 1;
int32 page_number = 2;
int32 result_per_page = 3;
}
m Numbered “tags” uniquely identify fields

m Tags also help with maintaining backward compatibility (versioning)
feedback 26/42

https://developers.google.com/protocol-buffers/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 26 (Google Protocol Buffers (protobuf))&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Wire encoding

m Key-value pairs
m Key = the tag (field number) + type information
m = unknown keys (and their values) can always be skipped

Type | Meaning Used For
0 Varint int32, int64, uint32, uinté4, sint32, sint64, bool, enum
1 64-bit fixed64, sfixed64, double
2 Length-delimited | string, bytes, embedded messages, packed repeated fields
3 Start group groups (deprecated)
4 End group groups (deprecated)
5 32-bit fixed32, sfixed32, float

m Key encoding: (field_number << 3) | wire_type
m Stored as Varint (see next slide)

feedback

27/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 27 (Wire encoding)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Wire encoding - Varint

m Encoded in variable number of bytes, small numbers take only one byte
m 7" bitis 1 in all but last byte.
m Bits 0-6 store the value.
m Examples:
m 9=00001001b — 00001001b
m 300=100101100b — 10101100 00000010
m Signed integers (sint) use Zigzag encoding (i.e., numbers close to zero are encoded
into a single byte):
B nisencodedas (n << 1) ~ (a >> 31)
0 0
-1
1

1
2
-2 3

114l

m Varint represents a trade-off between size of the encoded data and speed of

encoding/decoding.
feedback 28/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 28 (Wire encoding -- Varint)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Wire encoding - String and Message

m Varint-encoded length + bytes of string/message

B message Test2 {
required string b = 6;

+
m b = “testing”
m Encoded as (hex):

320774657374 69 6e 67
m32h=(6 << 3) | 2 // 6 = tag, 2 = length delimited
m 07h = length

feedback 29/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 29 (Wire encoding -- String and Message)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Wire encoding - repeated fields

B message Test4 {
repeated int32 d = 4 [packed=true];

}
B 0x22 // tag (field number 4, wire type 2)
0x06 // payload size (6 bytes)
0x03 // first element (varint 3)
0x8E 0x02 // second element (varint 270)

0x9E O0xA7 0x05 // third element (varint 86942)
m When reading, the field can be skipped without decoding all values.

feedback 30/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 30 (Wire encoding -- repeated fields)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Message streaming

m Parsing code does not know where a message begins and ends
m Solution: Put the length of the message before it

feedback 31/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 31 (Message streaming)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

Protobuf example - OpenStreetMap

https://wiki.openstreetmap.org/wiki/PBF_Format

message Node {
required sint64 id = 1;
// Parallel arrays.
repeated uint32 keys = 2 [packed = truel; // String IDs.
repeated uint32 vals = 3 [packed = truel; // String IDs.
optional Info info = 4; // May be omitted in omitmeta
required sint64 lat = 8;
required sint64 lon = 9;
b Node 25
message Way {
required int64 id = 1;
// Parallel arrays.
repeated uint32 keys = 2 [packed = truel; keyl-vall
repeated uint32 vals = 3 [packed = truel; key2-val2

Node 42

keyl-vall
key2-val2
key3-val3

optional Info info = 4; I:'

Node 24
repeated sint64 refs = 8 [packed = truel; // DELTA coded

}

Czech republic: PBF - 670 MB, XML - 16 GB
feedback 32/42

Node 43

https://wiki.openstreetmap.org/wiki/PBF_Format
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 32 (Protobuf example -- OpenStreetMap)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Protocol Buffers (protobuf)

From .proto to C++

addressbook.proto

mycode. cpp

package tutorial;

message Person {
required string name =
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

message PhoneNumber {

required string number = 1;

optional PhoneType type = 2 [default = HOME];
}

repeated PhoneNumber phones = 4;

}

message AddressBook {
repeated Person people = 1;

}

feedback

#include <iostream>

#include <fstream>

#include <string>

#include "addressbook.pb.h" // gemerated from .proto
using namespace std;

// Iterates though all people in the AddressBook and prints info about them.

void ListPeople(const tutorial::AddressBooki address_book) {
for (int i = 0; i < address_book.person_size(); i++) {
const tutorial::Person person = address_book.person(i);

cout << "Person ID: " << person.id() << endl;
cout << " Name: " << person.name() << endl;
if (person.has_email()) {
cout << " E-mail address: " << person.email() << endl;

¥

for (int j = 0; j < person.phone_size(); j++) {
const tutorial::Person: :Phonellumbert phone_number = person.phones(j);

switch (phone_number.type()) {
case tutorial::Person: :MOBILE:
cout << " Mobile phone #: ";

break;

case tutorial::Person: :HOME:
cout << " Home phone #: ";
break;

case tutorial::Person::WORK:
cout << " Work phone #: ";
break;

cout << phone_number.number () << endl;

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 33 (From .proto to C++)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

Outline

Data serialization “frameworks”

m Cap’n’proto

feedback 34/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 34 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

Cap’n’proto

https://capnproto.org/

m Developed by the original author of protobuf

m Some years later - lessons learnt from protobuf

m Very efficient for communication via shared memory
(e.g. between different languages)

m Still usable over network

m No de/encoding needed - serialized form is usable as a native form (unless packing is
used)

B = It's possible to just mmap a file to memory to work with the data.

feedback 35/42

https://capnproto.org/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 35 (Cap’n’proto)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

Cap’n’proto encoding

m Bool: 1 bit
m Integers: Little endian, native size, aligned to multiple of their size (padding)
m Default values: always encoded as zero, i.e. enc = val ~ default
- =XOR
m Optional packing = getting rid of zero bytes
m Set bits in the first byte indicate which of the following 8 bytes are non-zero. The nonzero
bytes follow.

B unpacked (hex): 08 00 00 00 03 00 02 00 19 00 00 00 aa 01 00 00
packed (hex): 51 08 03 02 31 19 aa 01

m Structures: Pointer (= index) to data and sub-structures

feedback 36/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 36 (Cap'n'proto encoding)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

Message + structure encoding

https://capnproto.org/encoding.html

Message Struct Name Email Phones Employment

struct Person {
id €0 :UTnt32; # Ozab 00000000 (00 00 00 00 10 00 00 0O 00 00 00 01 00 04 008 |................ |
name @1 :Text; # Alice 00000010 | Jab 00 00 00 02 00 00 00 f{od 00 00 00 32 00 00 00} [............ 2.
email @2 :Text; # aliceCezample.com 00000020 [(Jod 00 00 00 92 00 00 00 [N |
phones @3 :List (PhoneNumber) ; 00000030 22 1 6c 69 63 65 00 00 00| [%..."...Alice...|
struct PhoneNumber { 00000040 6C 69 63 65 40 65 78 W1 6d 70 6¢c 65 2e 63 6| |alice@example.co|
number Q0 :Text; # "555-1212" 00000050 mt 00 0 01 100, |
type O1 :Type; # mobile 00000060 00 00 00 00 00 6650491 00 O 4a 0 00] N
00000070 35 35 2d 31 32 31 3200 00 00 00 00 00 00 00 |
enum Type { |
mobile Q0; 00000080 | 4d 49 54 00 00 00 00 00
home @1; 00000088
work 02; . . .
3 m Tree-like data structure. Allows skipping of unknown or unwanted
} data.

employment union { m Packing allows getting rid of all 83 zero bytes above and adds 17

unemployed 04 :Void; more byteS.
employer @5 :Text;

school @6 :Text; # MIT

selfEmployed @7 :Void;

feedback 37/42

https://capnproto.org/encoding.html
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 37 (Message + structure encoding)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

From .capnp to C++

addr ok.capnp
struct Person {

mycode..cpp
#include "addressbook.capnp.h"

id @0 :UInt32;
name 01 :Text;
email @2 :Text;
phones @3 :List (PhoneNumber) ;

struct PhoneNumber {
number @0 :Text;
type C1 :Type;

enum Type {
mobile @0;
home @1;
work 02;
}
}

employment :union {
unemployed @4 :Void;
employer @5 :Text;
school @6 :Text;
selfEmployed @7 :Void;

}
}

struct AddressBook {
people @0 :List(Person);

We assume that a person is only one of these.

feedback

#include <capnp/message.h>
#include <capnp/serialize-packed.h>
#include <iostream>

void printAddressBook(int £d) {
+:capnp: :PackedFdilessageReader message (£d);

: ‘Reader =

for (Person::Reader person : addressBook.getPeople()) {
std: :cout << person.getlame().cStr() << ": "
<< person.getEnail().cStr() << std::endl;
for (Person: :PhoneNumber: :Reader phone: person.getPhones()) {
const char+ typeName = "UNKNOWN";
switch (phone.getType()) {
case Person: :Phonellunber: :Type: :MOBILE: typeName
case Person: :Phonelunber: :Type: :HOME: typeName
case Person: :Phonellunber: :Type: :WORK: typeName =

"mobile"; break;

3

std::cout << " " << typeName << " phome: "

<< phone.getNumber () .cStr() << std::endl;

Person: : Enpl : ‘Reader =
switch (employment.which()) {
case Person: :Enployment: :UNENPLOYED:
std::cout << " unemployed” << std::endl;
break;
case Person: :Employment: :EMPLOYER:
std::cout << " employer: "

<< employment.getEnployer().cStr() << std: :endl;

tEnploynent () ;

break;
case Person: :Employment: : SCHOOL:
std::cout << " student at: "

<< employment .getSchool().cStr() << std::endl;
break;
case Person: :Employment : :SELF_EMPLOYED:

std::cout << " self-employed” << std::emdl;
break;

38/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 38 (From .capnp to C++)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Cap’n’proto

FlatBuffers

https://flatbuffers.dev/

m Similar to Cap’n’Proto (access to serialized data without parsing/unpacking)
m From Google

feedback 39/42

https://flatbuffers.dev/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 39 (FlatBuffers)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Apache Avro

Outline

Data serialization “frameworks”

m Apache Avro

feedback 40/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 40 (Outline)&issue[description]=Insert your question/comment here.

Data serialization “frameworks” » Apache Avro

Apache Avro

m Schema in JSON
m Schema handshake after connection establishment

m No tags in data, because the schema is known to all parties
m File storage

m Compression
m Blocks allowing skip through the data without deseralizing them

feedback 41/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 41 (Apache Avro)&issue[description]=Insert your question/comment here.

Conclusion

Conclusion

m Data serialization format trade-offs:

m Human readability/ease of data manipulation
m Data size
m (De)serialization speed

m Select the right technology for your needs

feedback 42/42

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture serialization, slide 42 (Conclusion)&issue[description]=Insert your question/comment here.

	Introduction
	Less efficient data serialization
	XML
	JSON

	Faster alternative (C/C++)
	Data serialization ``frameworks''
	CORBA
	Protocol Buffers (protobuf)
	Cap'n'proto
	Apache Avro

	Conclusion

