feedback

B4M36ESW: Efficient software

Lecture 5: Memory, caches, algorithms

Michal Sojka

michal.sojka@cvut.cz

CTU

CZECH TECHNICAL
UNIVERSITY

e 2
A

IN PRAGUE

June 23, 2025

1/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 1 ()&issue[description]=Insert your question/comment here.

Why is DRAM slow?

Caches

m Architecture
= Cache associativity
= Cache write policies

m Memory performance characteristics
m Data structures and dynamic memory allocations
m Matrix multiplications

Caches & memory in multi-processor systems
m True and false sharing
= NUMA

Conclusion

feedback 2/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 2 (Outline)&issue[description]=Insert your question/comment here.

Why is DRAM slow?
Outline

Why is DRAM slow?

feedback 3/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 3 (Outline)&issue[description]=Insert your question/comment here.

Why is DRAM slow?

Types of RAM

m Static RAM (SRAM)
m Fast but expensive
m 6 transistors per bit

m Dynamic RAM (DRAM)
m Capacitor - (Dis)Charging is not instantaneous
m Reading discharges capacitor (write after read)
m Compromise: capacity/size/power consumption

Charge Discharge

- f— >

90 =]
£ 80 A \
270 % \
Y60 7 \
w0 50

0 / \
/

/ N\
[

M,
]

1IRC 2RC 3RC 4RC 5RC 6RC 7TRC 8RC oRC

feedback

= BL

4/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 4 (Types of RAM)&issue[description]=Insert your question/comment here.

DRAM in the computer

feedback

CPU PCle x16

PCH SATA Bus b

Intel’s P55 platform

Source: ArsTechnica

GPU

m CPU contains a memory controller
(MC)

m MC talks to DRAM chips via “Memory
Bus”, using a protocol

m Details on next slides

5/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 5 (DRAM in the computer)&issue[description]=Insert your question/comment here.

Why is DRAM slow?

How DRAM chips work?

m Addressing individual cells is impractical (many
wires)

m Chip is organized in rows and columns (and
banks), address is multiplexed

m In the chip, row and column multiplexers (green and pink
rectangles) Select the lines according to address bits

m R/W operations happen in many chips in parallel
to work with the whole data word (64 bits)

m Writing: New value is put on Data signal after row
and column address were selected (see nextsiide)

m |t takes some time to charge the capacitors

feedback

)
al,

Row Address Selection

324’

'H;]) 'IHFF F 'HFF) wb F

6/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 6 (How DRAM chips work?)&issue[description]=Insert your question/comment here.

Why is DRAM slow?
SDRAM communication protocol

ek LI LT L PPl

, . RAS
m Access protocol is synchronous - there is (-

a clock signal S

m SDRAM (Synchronous DRAM) —

m CLK provided by memory controller (FSB Address| ™ [\
frequency - typ. 800-1600 MHz) T adar \owe /™

| 'RCD | — i
Do Lo o o L)
m Max. speed: 64 bit x 8 x 200 MHz = 12.8 GB/s

m Not reachable in reality
m DRAM technology requires tgcp and CL delays (they cannot be shortened)
m Data sent in bursts

m Size of the burst corresponds to cache-line size

m Sending just one word would be very inefficient due to tgop and CL delays
feedback 7/51

m Double/Quad-pumped

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 7 (SDRAM communication protocol)&issue[description]=Insert your question/comment here.

Why is DRAM slow?

Timing parameters of standard DDR4 modules

Peak ..
Memory | /O bus | Data Timings, | CAS
Standard clock clock rate nM:n(::Ie :;a::sfer CL-tRCD- | latency
name (MHz) (MHz) (MT/s) (MB/s) tRP (ns)
10-10-10 125
DDR4-1600J* | 200 800 1600 PC4-12800 | 12800 11-11-11 13.75
DDR4-1600K 12-12-12 15
DDR4-1600L
12-12-12 12.857
DDR4-1866L* | 233.33 933.33 1866.67 | PC4-14900 | 14933.33| 13-13-13 13.929
DDR4-1866M 14-14-14 15
DDR4-1866N
14-14-14 13.125
DDR4-2133N* | 266.67 1066.67 | 2133.33 | PC4-17000 | 17066.67 | 15-15-15 14.063
DDR4-2133P 16-16-16 15
DDR4-2133R
15-15-15 125
DDR4-2400P* | 300 1200 2400 PC4-19200 | 19200 16-16-16 | 13.33
DDR4-2400R 18-18-18 15
DDR4-2400U

Source: Wikipedia
feedback

8/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 8 (Timing parameters of standard DDR4 modules)&issue[description]=Insert your question/comment here.

Caches

Outline

Caches
m Architecture

m Memory performance characteristics
m Data structures and dynamic memory allocations
m Matrix multiplications

feedback 9/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 9 (Outline)&issue[description]=Insert your question/comment here.

Caches » Architecture

Outline

Caches
m Architecture

feedback 10/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 10 (Outline)&issue[description]=Insert your question/comment here.

Caches » Architecture
CPU caches - big picture

m All loads/stores go through cache
m CPU « Cache: fast connection
m Cache < Main memory: FSB bus

m Itis an advantage to have separate caches for Cache '__
instructions and data

Main Memory E Bus

L1i Cache

feedback 11/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 11 (CPU caches -- big picture)&issue[description]=Insert your question/comment here.

Caches » Architecture
Cache terminology

m Spatial locality: accessed memory objects are close to each other

m Code: inner loops
m Data: structures (reading of one field is often followed by reads of other fields)

m Temporal locality: The same data will be used multiple times in a short period of time
m Code: loops
m Data: e.g. digital filter coefficients are accessed every sampling period
m Cache hit: memory request is serviced from the cache, without going to higher level
memory
m Cache miss: opposite of cache hit (request must go to slow main memory)
Multiple possible sources:
m cold miss, capacity miss, conflict miss
m true sharing miss, false sharing miss
m Cache line eviction: cache line is removed from the cache to make space for new data

m Cache replacement policy: Least recently used (LRU), pseudo LRU, random, ...
feedback 12/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 12 (Cache terminology)&issue[description]=Insert your question/comment here.

Caches » Architecture » Cache associativity

Cache associativity

m Direct-mapped cache
m simple
m Fully associative cache
m ideal
m Set associative cache
m trade-off (implemented in real CPUs)

feedback 13/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 13 (Cache associativity)&issue[description]=Insert your question/comment here.

Caches » Architecture » Cache associativity

Direct-mapped cache
Address:

31 0

T ———e——S———>—0 m Each memory location has just one
cache line associated with it

m Memory locations at multiples of cache
size always collide!
Here at multiples of 8x64 bytes.

m Besides the data, the cache stores the
tag

m Typical cache line size:

m Intel: 64 B
m Apple M1: 128 B

Memory

0B

Cache lines wg

512 B

typ. 648111

1KiB Y,

sizeof(int)

feedback 14/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 14 (Direct-mapped cache)&issue[description]=Insert your question/comment here.

Caches » Architecture » Cache associativity

Problem: Self-evicting of code

Memory

void outer_func() {
for (int i = 0; i < 1000; i++)
inner_func();

Cache lines
}

void inner_func() {
// do something
}

m Two cache misses every iteration
(instruction fetches)!

m Solution: Improve code layout by putting
related (and hot) functions together.

__attribute__((hot)) void outer_func();
__attribute__((hot)) void inmer_func();

feedback 15/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 15 (Problem: Self-evicting of code)&issue[description]=Insert your question/comment here.

Caches » Architecture » Cache associativity

Set associative caches

31 0

0B WayO Wayl [¢——T —>t——S —— >0

Sets

512 B

64 B
Majority of today’s hardware
Typically 8-16 ways
m Two-way set associative cache has approx. the same performance as
direct-mapped cache of double size.

m Cache can be seen as hardware hash-table with limited bucket size (limit
= the number of ways)

m Cache replacement policy - determines which way is evicted on conflict

feedback misses 16/51

1KiB

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 16 (Set associative caches)&issue[description]=Insert your question/comment here.

Caches » Architecture » Cache associativity

Self-evicting code and set associative caches

m Does the problem of self evicting code exist with set associative caches?
m Yes, butitis less likely to occur.
m Why?

feedback 17/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 17 (Self-evicting code and set associative caches)&issue[description]=Insert your question/comment here.

Caches » Architecture » Cache write policies

Cache write policies

Goal: Avoid useless eviction of cached data.

Write-back “Common” case. Written data are cached for later reuse and are not written
immediately to the system memory, which reduces bus traffic.

Write-through Written data are both cached as well as written to system memory. Useful for
frame buffers, where you want to “see” the write as pixels on the screen.

#include <emmintrin.h>
void _mm_stream_si32(int *p, int a); void _mm_stream_sil28(int *p, __ml128i a);

void _mm_stream_pd(double *p, __ml128d a);

#include <zmmintrin.h>

void _mm_stream_pi(__m64 *p, __m64 a); void _mm_stream_ps(float *p, __m128 a);
#include <ammintrin.h>

void _mm_stream_sd(double *p, __mi128d a); void _mm_stream_ss(float *p, __mi28 a);

Write-Combining Writes are not cached but stored in a write combining buffer. Once the
buffer is full, data are written directly to system memory at once. Write
combining is often used for frame buffer memory. Without it, updating the

screen (e.g. filling it with a color) would evict all other cached data.
feedback 18/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 18 (Cache write policies)&issue[description]=Insert your question/comment here.

Caches » Memory performance characteristics

Outline

Caches

m Memory performance characteristics

feedback 19/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 19 (Outline)&issue[description]=Insert your question/comment here.

Caches » Memory performance characteristics

Sequential access
Intel Core i7-2600

20 T T T T T T T T T
Cycles/access —+—
15 -
#define REP 1000000
" char A[65536%1024];
§ for (rep = 0; rep < REP; rep++)
o 10 for (i = 0; i < WSS; i += 64) .
z ALil++;
o] T d
5F i
-
O 1 1 1 1 1 1
4 16 64 256 1024 4096 16384

WSS [KiB]

feedback 20/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 20 (Sequential access)&issue[description]=Insert your question/comment here.

Caches » Memory performance characteristics

Random access

Intel Core i7-2600, (perf counters not in scale)

250 T T T T T T T T T T T
Cycles/access —4+—
L1 misses —*<—
L2 misses — K
200 - L3 misses —
TLB misses
@ 150 | char A[65536%1024];
9 WSS = (1<<N);
; mask = (1<<N) - 1;
& 100 | for (rep = 0; rep < REP; rep++) {
addr = ((rep + 523)%253573) & mask;
Aladdr] ++;
50 |- 3}
/74/‘
0 o R R T T T T T e ‘ 7‘1"7‘://*‘ X
1 4 16 64 256 1024 4096 16384

feedback

WSS [KiB]

21/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 21 (Random access)&issue[description]=Insert your question/comment here.

Caches » Memory performance characteristics

Translation Lookaside Buffer (TLB)

Linear Address (Virtual address)

m Caches translation of virtual to physical R e e o
address N . .
m On TLB miss, page walk has to be - Physical Ad
20

Page-Directory- PDE with PS=0 -
Pointer Table I] Page Table

performed (2 to 5 levels)

m Intel i7-2600 has 512 L2 TLBs =
512x4 kB =2 MB °
m Improvement: use so called huge [— J “
pages (1 page = 2 MB, PS=1)
m Linux: in some cases automatically or “ =

explicitly via hugetlbfs

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

feedback 22/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 22 (Translation Lookaside Buffer (TLB))&issue[description]=Insert your question/comment here.

Caches » Memory performance characteristics
Cache-related preemption delay

m When a thread is preempted by another thread, the preempting thread likely evicts
some data from the cache.

m After preemption ends, the preempted thread continues executing and experiences a
lot of cache misses!

m Certain (older) architectures has to flush TLBs when switching address spaces
(processes).

m Modern architectures allow tagging TLBs with address space identifier (ASID, PCID, ...)
m High-performance software tries to limit preemptions.
m Beware - limiting preemption increases response time!

feedback 23/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 23 (Cache-related preemption delay)&issue[description]=Insert your question/comment here.

Caches » Data structures and dynamic memory allocations

Outline

Caches

m Data structures and dynamic memory allocations

feedback 24/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 24 (Outline)&issue[description]=Insert your question/comment here.

Caches » Data structures and dynamic memory allocations

Data structures and cache friendliness

m Arrays + sequential access - nice

m Dynamically allocated linked lists - depends on the memory allocator (probably like
random access - bad)

m Search trees - random access

m For most data structures/algorithms, cache-optimized variants exist.
m These are more tricky than textbook examples.

feedback 25/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 25 (Data structures and cache friendliness)&issue[description]=Insert your question/comment here.

Caches » Data structures and dynamic memory allocations

Dynamic memory allocator (malloc(), new)

m Memory allocators try to maintain spacial and temporal locality
m Spatial locality is hard to achieve when heap is fragmented
m after many new/delete operations
m Temporal locality - when memory is freed/deleted, subsequent allocation tries to use that
memory because it is cache-hot.
m This is based on heuristics. If those heuristics fail for your workload, you should think
about writing special allocator for your workload.

feedback 26/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 26 (Dynamic memory allocator (malloc(), new))&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications

Outline

Caches

m Matrix multiplications

feedback 27/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 27 (Outline)&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications
Example of cache-optimized algorithm

C=A-B A=[g)l, ij=1...N

N
Cij = >_k=1 ik - bj
Cache-optimized version is 10x faster than naive implementation

feedback 28/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 28 (Example of cache-optimized algorithm)&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications

Matrix multiplication - naive implementation

Matrix multiplication: Naive

A mem:9 cache hit:4 B mem:9 cache hit:0

C _mem:9 cache hit:8

Totals: mem:27 cache hits:12 =44%

cmr

for (i = 0; i < Nj; ++i)
for (j = 0; j < N; ++j)
for (k = 0; k < N; ++k)
C[i1[j]1 += A[i1[kx] * Bk1[j];

feedback

One matrix element: double (8 B)
Cache line size: 16 B
Fully associative caches

L2 cache: 128 B, L1 cache: 32B
In this example, we assume each matrix has its own cache. Real HW

has a cache shared by all matrices. 29/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 29 (Matrix multiplication -- naive implementation)&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications

Implementation with transposition

Matrix multiplication: B transposed

A mem:9 cache hit:4 B mem:9 cache hit:a C _mem:9 cache hit:8

Totals: mem:27 cache hits:16 =59%

double B[N][N]; for (i = 0; i < N; ++i)
for (i = 0; i < N; ++i) for (j = 0; j < N; ++j)
for (j = 0; j < N; ++3) for (k = 0; k < N; ++k)
B[il[j1 = Bsrc[jI1[il; Cli1[3]1 += ALil[x] * B[j][k];

Performance (execution time): naive: 100%, transposed: 23,4%
feedback 30/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 30 (Implementation with transposition)&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications

Tiled implementation

Matrix multiplication: Tiled, B transposed

C mem:128 cache hit:120

B mem:128 cache hit:112

A mem:128 cache hit:112

cache hits:344 =89%

Totals: mem:384

1 ot s e m Each “tile” fits into the cache
m Performance: 17.3% of naive implementation (9.5%

for (i1 = 0; i1 < N; i += tile)
for (i = i1; i < il + tile; ++i)
for (j(= j1; j < j1 + tile; ++j) , . h . d S|MD .
for (k = k1; k < ki + tile; ++k
Clil[j] += ALil[k] * B[j1[k]; with vectorize ()operatlons)
31/51

feedback

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 31 (Tiled implementation)&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications

Tiled implementation and L1 cache

Matrix multiplication: Tiled, B transposed

B mem:126 L1 hit:63 L2 hit:47 C mem:126 L1 hit:110 L2 hit:8

A mem:126 L1 hit:110 L2 hit:0

Totals: mem:378 L1 hits:283 =74% L2 hits:55 =14% cache hits:338 =89%

or (k1 = 0; ; k += tile) ot
: fork%jl ! 01;{13;]<1 NI: 3 o iile) m No temporal L1 cache hitin B
for (i1 = 0; i1 < N; i += tile)
for G =it < it +tile; 44 m 75% L1 hits (in total)

for (j = j1; j < j1 + tile; ++j)
for (k = k1; k < k1 + tile; ++k)
CLi1[31 += A[i][k] = B[j1[k];
32/51

feedback

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 32 (Tiled implementation and L1 cache)&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications

Two-level tiled implementation

Matrix multiplication: 2-level tiled, B transposed

A mem:126 L1 hit:94 L2 hit:16 B mem:126 L1 hit:94 L2 hit:16

C mem:126 L1 hit:110 L2 hit:8

Totals: mem:378 L1 hits:298 =78% L2 hits:40 =10%

cache hits:338 =89%

A — —— =
B — —o ——)
[d=— — —— =0)

j2 < N; j2 tile2)
0; i2 < N; i2 += tile2)
for (k1 = k2; k1 < k2 + tile2; k += tilel)

for (j = ji1; j < j1 + tilel; ++j)
for (k = ki; k < ki + tilel; ++k)
Clil[j] += ALl (k] = B[j1[k];

feedback

m 79% L1 hits

33/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 33 (Two-level tiled implementation)&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications

Recursive matrix multiplication

m Generalization to arbitrary number of cache levels
m NN multiplication = 8 multiply-add of (N/2)(N/2) multiplications
[011 |C12}=[A11 |A12] [311 |B12]
Coy | Co2 Aoy | Ao Bo1 | Bxo

[A11Bi1 | A11Bi2] [A12Bo1 | A12Boo]
A21Bi1 | Az1Bi2 Az2Boy | AgoBop

feedback 34/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 34 (Recursive matrix multiplication)&issue[description]=Insert your question/comment here.

Caches » Matrix multiplications

Animations

B https://www.youtube.com/playlist?list=PLB_aWiiTtlaf-dICxt6E7pNJIWrfcqHE2g
m Source code: https://github.com/wentasah/mmul-anim

feedback 35/51

https://www.youtube.com/playlist?list=PLB_aWiiTt1af-dICxt6E7pNJWrfcqHE2g
https://github.com/wentasah/mmul-anim
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 35 (Animations)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems

Outline

Caches & memory in multi-processor systems
m True and false sharing
= NUMA

feedback 36/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 36 (Outline)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems

Cache coherency

In symmetric multi-processor (SMP) systems, caches of the CPUs cannot work
independently from each other.
m Maintaining of uniform view of memory for all processor is called “cache coherency”

m If some processor writes to a cache line, other processors have to clean the
corresponding cache line from their caches.

m Remember: inter-core (inter-socket) communication is “slow”
m Cache synchronization protocol: MESI(F)

m A dirty cache line is not present in any other processor’s cache.
m Clean copies of the same cache line can reside in arbitrarily many caches.

feedback 37/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 37 (Cache coherency)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems

Cache coherency graphically

store store store store
buf. buf. buf. buf.
L2$ L2$ L2$ L2$
CPU interconnect (bus)
Memory
feedback

38/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 38 (Cache coherency graphically)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » True and false sharing

Outline

Caches & memory in multi-processor systems
m True and false sharing

feedback 39/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 39 (Outline)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » True and false sharing

True sharing

m Program is slow because cache lines with shared data travel from one CPU to another.
m Typical example of true sharing: each mutex is shared between CPUs.

m When that is a problem (too much contention):

m make locking more fine-grained,
m or change your data structure (e.g. per-CPU data),
m and/or algorithms to be more cache friendly.

std::atomic_int32_t counter;

void thread_cpu0O() { void thread_cpul() {
while (true) while (true)
counter++; counter++;
} }

feedback 40/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 40 (True sharing)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » True and false sharing

All CPUs executing atomic increment of global variable

feedback 41/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 41 ()&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » True and false sharing

AMD Ryzen 5000

QT B
ebug, | g 'bu

R

Interconnect 2. .= R i
i y

* Zen3 Coré

4 e

feedback

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 42 (AMD Ryzen 5000)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » True and false sharing

False sharing - problem

m Data accessed from different CPUs is not shared but happen to be stored in a single
cache line.

// Per-CPU counters
std::atomic_int32_t counter_cpuO;
std::atomic_int32_t counter_cpul;

void thread_cpu0() { void thread_cpul() {
while (true)

while (true)
counter_cpuO++; counter_cpul++;
}

m Detecting false sharing in your program:
m Not visible in the source code!
m Combining information from several HW performance counters can help
B That’'s what Linux’s perf c2c (cache to cache) subcommand does.

feedback 43/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 43 (False sharing -- \only <1|handout:1>{problem}\only <2|handout:2>{solution})&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » True and false sharing

False sharing - solution

m Data accessed from different CPUs is not shared but happen to be stored in a single
cache line.

// Per—CPU counters, each alligned to cache line boundary
std::atomic_int32_t counter_cpuO __attribute__((aligned(64)));
std::atomic_int32_t counter_cpul __attribute__((aligned(64)));

void thread_cpu0() { void thread_cpul() {
while (true)

while (true)
counter_cpuO++; counter_cpul++;
}

m How to determine cache size?

m atruntime: sysconf (_SC_LEVEL1_DCACHE_LINESIZE) ;
m at compile time: gcc -DLEVEL1_DCACHE_LINESIZE=$(getconf LEVEL1_DCACHE_LINESIZE) ...

feedback 43/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 43 (False sharing -- \only <1|handout:1>{problem}\only <2|handout:2>{solution})&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » True and false sharing

Example

Code from RCU assignment

Per-thread seed all allocated by the
compiler/linker:

__thread unsigned int seed;

void gen_rnd_key(char *key, int length)
{
int len = strlen(charset);
for (int i = 0; i < length; i++) {
int r = rand_r(&seed);
key[i] = charset[r];
}
key[length] = '\0';
}

__thread also ensures that each seed variable
is located in a different cache line.

feedback

Per-thread seed all allocated by the programmer (false
sharing):

unsigned int seed[NUM_CPUS];

void gen_rnd_key(char *key, int length, int thread_idx)
{
int len = strlen(charset);
for (int i = 0; i < length; i++) {
int r = rand_r(&seed[thread_idx]);
key[i] = charset[r];
}
key[length] = '\0';
}

This version is about 40% slower on the ritchie server
when running on 32 CPUs.

44/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 44 (Example)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » NUMA

Outline

Caches & memory in multi-processor systems

= NUMA

feedback 45/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 45 (Outline)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » NUMA

Non-Uniform Memory Access (NUMA)

Memory

| ' I Processor
Memory

feedback 46/51

Controller

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 46 (Non-Uniform Memory Access (NUMA))&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » NUMA

Thread migrations between cores

m OSes tend to do load balancing

m By default threads are automatically migrated from overloaded to underloaded cores
m Migrated threads loose their cache footprint (cache-related migration delay)
m Migrated threads loose their NUMA locality

m If you do your own load balancing in the application, pin the threads to CPUs (set their
CPU affinity):
cpu_set_t cpuset;
pthread_t thread;
thread = pthread_self();
/* Set affinity mask to include only CPU 3 */
CPU_ZERO (&cpuset) ;
CPU_SET(1 << 3, &cpuset);
s = pthread_setaffinity_np(thread, sizeof (cpu_set_t), &cpuset);

feedback 47/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 47 (Thread migrations between cores)&issue[description]=Insert your question/comment here.

Caches & memory in multi-processor systems » NUMA

libnuma (Linux)

#include <numa.h>
int numa_available(void);

int numa_max_possible_node(void);
int numa_num_possible_nodes();

int numa_max_node(void) ;

/).

int numa_preferred(void);

void numa_set_preferred(int node);

void numa_set_interleave_mask(struct bitmask *nodemask) ;
/.

void numa_bind(struct bitmask *nodemask) ;

void numa_set_localalloc(void);

void numa_set_membind(struct bitmask *nodemask) ;

feedback 48/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 48 (libnuma (Linux))&issue[description]=Insert your question/comment here.

Conclusion

Outline

Conclusion

feedback 49/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 49 (Outline)&issue[description]=Insert your question/comment here.

Conclusion

Conclusion

m Size matters

m Even though we have terabytes of memory, size and layout of the data structures still
matters.
m Only few kilobytes of memory is fast, the rest is slow!

m Cache optimized algorithms can be 10-100x faster than naive implementations.

m When you profiler reports a lot of cache misses and you don’t see any shared data,
check for false sharing.

feedback 50/51

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 50 (Conclusion)&issue[description]=Insert your question/comment here.

Conclusion
References

m Ulrich Drepper, “What Every Programmer Should Know About Memory”, 2007/11
[online], http://people.redhat.com/drepper/cpumemory . pdf

feedback 51/51

http://people.redhat.com/drepper/cpumemory.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture memory-access, slide 51 (References)&issue[description]=Insert your question/comment here.

	Why is DRAM slow?
	Caches
	Architecture
	Memory performance characteristics
	Data structures and dynamic memory allocations
	Matrix multiplications

	Caches & memory in multi-processor systems
	True and false sharing
	NUMA

	Conclusion

