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Synchronization

m Multi-core CPUs are today’s norm, many-core CPUs will come tomorrow

m To take the advantage of such a hardware, parallel (multi-threaded) programs must be
run on them

m Programs are not useful when their threads are completely independent, i.e. threads
have to communicate (synchronize)

m Synchronization can be a big source of performance problems

m Basic forms of synchronization:

m Mutual exclusion (e.g. access to shared data)
m Producer-consumer (e.g. a database waits for requests)
u ..
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 2 (Synchronization)&issue[description]=Insert your question/comment here.

Naive synchronization

Mutual exclusion

Data should be modified at most by Problems:
one thread at a time:

bool locked = false;

Checking and setting the lock is not atomic

Compiler can optimize out all accesses to locked

void func() { Compiler can move access to data out of the
while (locked == true) critical section
{ /* busy wait */ } Hardware can reorder memory accesses even if
locked = true; compiler does not
data+t+; Can easily deadlock
locked = false;

y B Busy waiting wastes energy

Terminology: code in the “locked”
region is called critical section
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 3 (Naive synchronization)&issue[description]=Insert your question/comment here.

Background

Outline
Background
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 4 (Outline)&issue[description]=Insert your question/comment here.

Background
Quote

Implementing a correct synchronization primitive is like
committing the perfect crime. There are at least 50 things
that can go wrong, and if you are a highly experienced
genius, you might be able to anticipate and handle 25 of
them.

— Paul McKenney

https://lwn.net/ml/linux-kernel/20190608160620.GH28207@1linux.ibm.com/
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https://lwn.net/ml/linux-kernel/20190608160620.GH28207@linux.ibm.com/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 5 (Quote)&issue[description]=Insert your question/comment here.

Background

Why is synchronization complex?

m Data is cached at multiple
places (distributed system).

TS TS S oe; ™ Other CPUs do not see
buf. buf. buf. buf. changes immediately.
m Cache coherency protocols
(e.g. MESIF)
L2$ L2$ 2% L2$ m Out-of-order execution
m ..

CPU interconnect (bus)

Memory
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 6 (Why is synchronization complex?)&issue[description]=Insert your question/comment here.

Background

Event ordering in distributed systems

m Event = memory read or write operation

m Events can be ordered according to the happens before
relation

m Events in a single thread have total ordering (you can always
say which came first or second)

m The “happens before” relation is a partial ordering, i.e., it is
possible to have two events P and Q such that neither
happens before the other.

m Events in multiple threads can be ordered only if there exists a
happens before relation between the operations in the
threads.

m Only some operations (CPU instructions) provide happens
before relation
m See atomic operations (later slide) with release and acquire

semantics
For details see: https://lwn.net/Articles/844224/

feedback

Thread 1 Thread 2
mutex.lock()
|
| happens before
1
data++;
|
1
mutex.unlock() --+ mutex.lock()
|
1
data++;
|
1
mutex.unlock()
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https://lwn.net/Articles/844224/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 7 (Event ordering in distributed systems)&issue[description]=Insert your question/comment here.

Naive synchronization problems
Outline

Naive synchronization problems
Non-atomic data manipulation
Unwanted compiler optimizations
Reordering at hardware level
Deadlock

Busy waiting (spinning)
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 8 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Outline

Naive synchronization problems
m Non-atomic data manipulation
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 9 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Atomic operations

m Example of non-atomic increment:
m C expression: data++;
m Assembler (x86): inc ($data) - atomic (uninterruptible) only on a single CPU
m Hardware (for simplicity without caches): memory bus read, ALU, memory bus write

CPUO CPU1 data
bus read 0
ALU bus read 0
bus write ALU 1
bus write 1

m Atomic operations ensure that the operation (typically read-modify-write) is atomic
(uninterruptible) even at the hardware (bus) level.
m Typical atomic operation: compare-and-swap (CAS), on x86: cmpxchg instruction
m InC: TYPE __atomic_exchange_n(TYPE *ptr, TYPE val, int memorder)
Atomically set *ptr to val and return old value of *ptr.

void lock() { void lock() {
while (locked == true) while (__atomic_exchange_n(&locked, true, Q) == true)
{ /* busy wait */ } = { /* busy wait */ }

locked = true;
feedback } } 10/65


https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 10 (Atomic operations)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Atomic operations in C and C++

m For long time, atomic operations were not standardized in C/C++
m Solution: Incompatible compiler extensions, inline assembler
m C11, C++11 introduced thread-aware memory model and defined platform independent
atomic operations
m C11: #include <stdatomic.h>, atomic_* functions
m C++11

B #include <atomic>

B std::atomic template

m Example:
std::atomic<int> x;
x++; // atomic increment

m Beware: Atomic operations are slower than non-atomic ones!
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 11 (Atomic operations in C and C++)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Why are atomic operations slower?

m The CPU performing the atomic
operation must ensure that
other CPUs do not have the

store store store store
buf. buf. buf. buf. same value cached.

m This involves communication
(synchronization) with other
CPUs.

m Why? Atomic operations
require exclusive access (in
CPU interconnect (bus) terms of cache coherency
protocol) to the memory
location, which, in the worst
Memory case, requires broadcast over

the CPU interconnect bus.
feedback 12/65
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 12 (Why are atomic operations slower?)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Cost of atomic operations & barriers
16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) | Ratio
Clock period 04 1.0
“Best-case” CAS 122 | 33.8
Best-case lock 256 | 71.2
Single cache miss 129 | 35.8
CAS cache miss 70| 194
Single cache miss (off-core) 312 | 86.6
CAS cache miss (off-core) 312 | 86.5
Single cache miss (off-socket) 92.4 | 256.7
CAS cache miss (off-socket) 95.9 | 266.4

Source: Paul E. McKenney, IBM

feedback

m Atomic operations are costly
(here 19-266 times slower than
non-atomic operations)

m Barriers are typically cheaper
(weak barriers more that full
barriers)

m Barrier: machine instruction that
orders memory operation in a single
thread (see later slide).
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 13 (Cost of atomic operations & barriers)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Unwanted compiler optimizations

Outline

Naive synchronization problems

m Unwanted compiler optimizations
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 14 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Unwanted compiler optimizations

Compiler optimizations

#define barrier() asm volatile("" : : : "memory")
bool locked; volatile bool locked;
while (locked) {}

hile (locked
while (locked) {} locked = true;

locked = true;

data++; zarriif();
locked = false; ata. ’
barrier();
locked = false;
m Compiler expects the memory is only m Compiler is free to reorder operations as
modified by the single threaded program long as the result of single-threaded
being compiled (unless it uses atomic computation is the same
operations) m barrier() prevents the compiler from
m The locked variable seems to be useless reordering memory operations before and
= optimize out after the barrier.

m We distinguish compiler barriers (as
above) and CPU barriers (instructions,
feedback see later) 15/65

m prevented by the volatile keyword


https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 15 (Compiler optimizations)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Unwanted compiler optimizations

Compiler optimizations cont.

m Defining the variable volatile makes all accesses “volatile” i.e. slow.
m Sometimes, we need only certain accesses to have volatile semantics and the rest can
be optimized:
#define ACCESS_ONCE(xz) (*(volatile typeof(xz) *)&(xz))
#define LOAD_SHARED(p) ACCESS_ONCE(p)
#define STORE_SHARED(z, w) ({ ACCESS_ONCE(z) = (v); })

#define barrier() asm volatile("" : : : "memory")

m See examples in later slides (RCU implementation).
m The macro barrier is only a compiler barrier, not hardware barrier, i.e., the compiler will
not reorder the generated instructions, but CPU can still reorder them during execution.
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 16 (Compiler optimizations cont.)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Reordering at hardware level

Outline

Naive synchronization problems

m Reordering at hardware level
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 17 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Reordering at hardware level

Hardware reordering

m Different CPU architectures implement different memory consistency models
m Problem: Some operations can be reordered with respect to other operations

[

Qoo ® 3

slelalE1E15] [5]a] |2

s [2|E|Y ||| 8| &8|l«|%5

5| E|2|3|8|8|5|glsl2|8s

Type < < a a [ [ o x X < = N

Loads — loads Y Y Y Y Y N N N Y N Y N

Loads — stores Y Y Y Y Y N N N Y N Y N

Stores — stores Y Y Y Y Y Y N N Y N Y N

Stores — loads Y Y Y Y Y Y Y Y Y Y Y Y

Atomic — loads Y Y N Y Y N N N N N Y N

Atomic — stores Y Y N Y Y Y N N N N Y N

Dependent loads Y N N N N N N N N N N N
Incoherent inst. cache pipeline Y Y N Y Y Y Y Y Y N Y

Source: Wikipedia

m x86 can reorder stores after loads, e.g. data variable from slide 15 can be read before other
CPUs see locked set to true!
m Why? Stores may have to wait for cache-line ownership in the store buffer. Not waiting with
subsequent reads improves performance.

m Solution: Insert memory barrier instructions.
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 18 (Hardware reordering)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Reordering at hardware level

Barrier (fence) instructions

m Ensure that all memory operations issued in front of the barrier are completed before
issuing any memory operation after the barrier
m Some architectures provide more barrier types:
m Full barriers prevents reordering of all memory operations,
m weak barriers prevents reordering of either loads or stores only.
m Examples: nfence (full barrier), 1fence (weak barrier) instructions (on x86), dmb (on
ARM).

m RCU implementations at the end of this lecture use smp_mb () function, which is a
platform independent wrapper of these instructions.
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https://www.felixcloutier.com/x86/mfence
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CIHGHHIE.html
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 19 (Barrier (fence) instructions)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Reordering at hardware level

Specifying memory ordering requirements in C/C++

atomic: :load/store method’s order parameter specifies how regular, non-atomic memory accesses are to
be ordered around an atomic operation:

m relaxed: No overhead, no order guarantee m release: No reads or writes in the current
(only atomicity) thread can be reordered after this store. All
E consume writes in the current thread are visible in other
m acquire: No reads or writes in the current threads that acquire the same atomic variable
thread can be reordered before this load. All m acq_rel,
writes in other threads that release the same m seq_cst: high overhead, sequential
atomic variable are visible in the current thread consistency

Depending on the CPU architecture, different orders cause the compiler to generate barrier instructions
(e.g., Ifence on x86)

“Happens before” relation created by acquire/release ordering

int data;
std: :atomic<int> owner;

Thread 1 Thread 2

data = 1

owner.store(2, std::memory_order_release) --+ if (owner.load(std::memory_order_acquire) == 2)
read(data)
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 20 (Specifying memory ordering requirements in C/C++)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Deadlock

Outline

Naive synchronization problems

m Deadlock
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 21 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Deadlock

Deadlock

m Example:

m Single-core system
m Spinning lock
m Two threads low- (LP) and high-priority (HP)

LP_thread HP_thread
lock();
data++;
- preemption -+
lock(); // deadlock

m Solution: When the lock is not available, ask the OS scheduler to put your thread to
sleep and wake you up after the lock is available

m Problem: atomicity of checking the lock and going to sleep
m Requires implementation in the OS kernel
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 22 (Deadlock)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Busy waiting (spinning)

Outline

Naive synchronization problems

m Busy waiting (spinning)
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 23 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Busy waiting (spinning)

Spinlocks

m The lock (from our initial example) that does not involve OS scheduler and waits by
spinning (looping, busy waiting) is called a spin lock.
m Applications almost never need to use spin locks.
m It wastes energy, CPU time and can lead to deadlocks (see above).
m Spin locks are, however, used in operating system kernels in contexts, where sleeping
is not allowed.

m Only threads (tasks, processes) can sleep.

m Interrupt handlers cannot sleep.

m Hence device drivers often use spin locks.

m OS scheduler must also use spin locks, because it cannot put itself to sleep.
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 24 (Spinlocks)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking)

Outline

Real-world synchronization (locking)
m Kernel semaphores
m Futex
m Cost of atomic operations and barriers
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 25 (Outline)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking)

Mutex

m Most-common synchronization primitive

m Simple API (lock/unlock)
m Can be implemented in different ways

m Kernel semaphore
m Futex
..

m All implementations (at least on multi-core systems) involve atomic instructions.
m Remember: Atomic instructions can be slow!
m Sleeping is implemented by interacting with the OS scheduler.
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 26 (Mutex)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Kernel semaphores

Outline

Real-world synchronization (locking)
m Kernel semaphores
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 27 (Outline)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Kernel semaphores

Kernel semaphores

m Lock (mutex) implementation inside the OS kernel
m Each system call adds overhead (= 100 clock cycles on modern HW)

m ltis preferable to use “fine-grain” locking, i.e. locks protect as little data as possible to
prevent lock contention.

m If fine-grain locking is effective, the lock is not contended and threads rarely have to
sleep, but always pay the syscall overhead!

m That’s not efficient - the solution in Linux is called futex.
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 28 (Kernel semaphores)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Futex

Outline

Real-world synchronization (locking)

m Futex
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 29 (Outline)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Futex

Futex

Fast Userspace Mutex

m Uncontended mutex never goes to the
kernel

m A futex consists of an atomic counter in
user space memory and a wait queue in
the kernel.

m The counter is updated with atomic
instructions (executed by user space
code) cmpxchg(val, expct, new) - prev

B futex_wait() and futex_wake() are
system calls that are called only in case
of contention, when sleeping is needed

feedback

class mutex {
public:
mutex() : val (0) { }

void lock() {
int c;
if ((c = cmpxchg (val, 0, 1)) !=0) {
if (c != 2)
c = xchg (val, 2);
while (¢ !'= 0) {
futex_wait (&val, 2);
c = xchg (val, 2);

}
}
void unlock() {
if (atomic_dec (val) != 1) {

val = 0;
futex_wake (&val, 1);
s
¥
private:
int val;
};

U. Drepper, Futexes Are Tricky, 2011,
Online: https://www.akkadia.org/drepper/futex.pdf
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https://www.akkadia.org/drepper/futex.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 30 (Futex)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Futex

Futex uses

m Futex is a primitive mechanism that can be used to implement the following higher-level
synchronization mechanisms:

m Mutexes

m Semaphores

m Conditional variables
m Thread barriers

m Read-write locks

m Today, pthread_mutex_t in Linux is implemented via futex.

m JVM’s synchronization via Mark word and thin/fat locking is conceptually the same as
futex (see next lectures about Java)
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 31 (Futex uses)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Futex

Why are futexes tricky?

m What happens when a futex is shared between processes and one process
unexpectedly crashes, when it has locked the mutex?

m Deadlock! The user space counter stays in the locked state, because the only one who
can unlock it has crashed. Since the kernel is not aware about the locking operation (in
the uncontended case), it cannot help here.

m Linux solves this problem with so called “Robust futex” implementation. The locations
of futex counters are registered with the kernel at initialization time. When the process
crashes, the kernel scans its user space memory for locked mutexes and unlocks them.
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 32 (Why are futexes tricky?)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Outline

Real-world synchronization (locking)

m Cost of atomic operations and barriers
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 33 (Outline)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Cost of atomic operations & laws of physics

System with 4 sockets, each with 4 CPU cores

CPU CPU CPU CPU CPU CPU CPU CPU

Interconnect Interconnect
Interconnect Interconnect

CPU CPU CPU CPU CPU CPU CPU CPU
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 34 (Cost of atomic operations & laws of physics)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Cost of atomic operations & laws of physics
System with 4 sockets, each with 4 CPU cores

Speed of light RT in 1 cycle @ 3 GHz = 5 cm
Speed of electrons in transisors: 0.03-0.3C

CPU CPU CPU CPU CPU CPU CPU CPU

Interconnect Interconnect
Interconnect Interconnect

CPU CPU CPU CPU CPU CPU CPU CPU
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 34 (Cost of atomic operations & laws of physics)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Cost of atomic operations & laws of physics

System with 4 sockets, each with 4 CPU cores

All CPUs executing atomic increment of global variable

PU PU

Store Stor
Buffer Buffer

Memory Interconnect Memory

Every CPU experiences a cache miss, because other CPUs access the variable as well
= Sequential execution
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 34 (Cost of atomic operations & laws of physics)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Cost of atomic operations & laws of physics

System with 4 sockets, each with 4 CPU cores

All CPUs executing atomic increment of per-cpu variable

Interconnect Interconnect

Interconnect Interconnect

e EE R R E
CPU | CPU | CPU | CPU CPU | CPU | CPU | CPU

No cache miss = much faster & parallel
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 34 (Cost of atomic operations & laws of physics)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Locking overhead

m Classical locks are typically implemented with atomic m Uncontended case: during lock(), mutex is not in the
instructions and ensure that lock manipulation is not cache, during unlock() it is
reordered with critical section content. m Contended case: mutex is not in the cache even during

pthread_mutex_lock(mutex) ; unlock, because there is (probably) another CPU trying to
X+ lock the mutex and thus “stealing” the lock from

pthread_mutex_unlock (mutex) ; mutex-owner’s cache

Single-instruction critical sections protected by a lock

257cycles l l‘
Unlock
1
cycle

257 cycles

No Spinin
No Spinning
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 35 (Locking overhead)&issue[description]=Insert your question/comment here.

Read-mostly workload

Outline

Read-mostly workload
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 36 (Outline)&issue[description]=Insert your question/comment here.

Read-mostly workload

The problem of mutex

Mutual exclusion in massively parallel read-mostly workload
Lock/unlock overhead
Dead time during updates

CPUO Reader

CPU 2 Reader - Reader
CPU 3 - Updater

feedback
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 37 (The problem of mutex)&issue[description]=Insert your question/comment here.

Read-mostly workload
Read-mostly workload

m Many real-world workloads are “read-mostly”
m Caching - Most users only read the data. The cache is updated only from time to time
(new article is published, etc.)

m Web site cache (template rendering)
m Content delivery network (CDN)

m File system access

m Domain Name System (DNS)

m ..

m Maintaining consistency while updating - synchronization between readers and
updaters (writers)
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 38 (Read-mostly workload)&issue[description]=Insert your question/comment here.

Read-mostly workload

Read-Write lock

m Classical solution - read-write lock
m Multiple readers can read simultaneously

m Update blocks all readers
Reader
CPUO IReaderl Reader . I

CPU1 IReader

CPU2 IReaderl Reader I
Reader

CPU3 I ReaderIReader (updated) [

m Can be implemented on top of mutex(es)

m Scales badly due to atomic instructions in lock/unlock.
feedback 39/65
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https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 39 (Read-Write lock)&issue[description]=Insert your question/comment here.

Read-mostly workload

Simple RW-lock implementation

Readers have priority over writers

struct rwlock { void read_lock(rwlock &rwl) {
semaphore_t sem; rwl.readers_lock.lock();
mutex_t readers_lock; rwl.readers_active++;
unsigned readers_active; if (rwl.readers_active == 1)
}; rwl.sem.wait();
rwl.readers_lock.unlock();
void write_lock(rwlock &rwl) { }
rwl.sem.wait();
} void read_unlock(rwlock &rwl) {
rwl.readers_lock.lock();
void write_unlock(rwlock &rwl) { rvl.readers_active-—;
rwl.sem.post(); if (rwl.readers_active == 0)
} rwl.sem.post();
rwl.readers_lock.unlock();
}
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Read-mostly workload

Simple RW-lock implementation

Writers have priority over readers

struct rwlock {
mutex_t lock;
cond_t cond;
unsigned rd_active;
unsigned wr_waiting;
bool wr_active;

};

void write_lock(rwlock &rwl) {
rwl.lock.wait();
rvl.wr_waiting++;
while (rwl.rd_active || rwl.wr_active)

cond_wait(rwl.cond, rwl.lock);

rvl.wr_waiting--;
rwl.wr_active = true;
rwl.lock.unlock();

}

void write_unlock(rwlock &rwl) {
rwl.lock.wait();
rwl.wr_active = false;
cond_broadcast (rwl.cond);

feedbEgk . 1ock . .unlock () ;

void read_lock(rwlock &rwl) {
rwl.lock.lock();
while (rwl.wr_waiting || rwl.wr_active)
cond_wait(rwl.cond, rwl.lock);
rwl.rd_active++;
rwl.lock.unlock();
¥

void read_unlock(rwlock &rwl) {
rwl.lock.lock();
rwl.rd_active-—;
if (rwl.rd_active == 0)
cond_broadcast (rwl.cond);
rwl.lock.unlock();
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Read-mostly workload

We want this
CPUO Reader Reader Reader
CPU1 Reader Reader |Reader Reader
(updated)
CPU 2 Reader| Reader Reader
Reader
CPU 3 Reader |Readerfl Updater o

m Readers have no overhead

m Updater does not block readers
m Is that possible? Yes

m For what cost? See next slides
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Read-Copy-Update (RCU)

Outline

Read-Copy-Update (RCU)
m RCU implementations
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Read-Copy-Update (RCU)

Read-side scalability of synchronization primitives

9e+09 ' QSBRCU —— ' ' = RCU is scalable -
86409 Signal-based RCU - . typically it scales almost
General-purpose ROU. = linearly up to hundreds or
T 7e+09 - er-thread mutex - ]
S pthread mutex --m=-- o thousands of CPUs
. X . . .
8 6e+09 | pthread reader-writer lock --e-- o . m This is possible due to
> o RCU not using atomic
5 Se+09 r o) i instructions on the read
% 4e+09 | i, side. '
5 m Atomic instructions are
g 3es09 1 1 not needed because no
2 26400 i two threads write to the
same variable.
1e+09 * .
R RRIIIKITIE o m Locking doc_as not scale
0 T Ala|sia/ziEE] £l (see next S||de)
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Number of cores
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Read-Copy-Update (RCU)

Locking scalability

m Zoomed in version of the previous graph

9e+06 T T T T thl q t T

- pthread mutex ——
8e+06 pthread reader-writer lock --—---—
7e+06 | 7
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Number of reads / second
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Read-Copy-Update (RCU)

Updating an RCU-protected list

1. 2. 3. 4 5

A A A A A

| i i — ——

B B B B D B D D

L = F— -

C C C C C
Original list m Steps 1-4 are trivial, making
Copy B step 5 efficient is why RCU is
Update B to D needed! B
1 Make the updated element visible to readers m RCU converts a scalability

problem into a garbage

Wait after all readers stop accessing B and free it collection problem.
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Read-Copy-Update (RCU)

How does RCU know when no reader access old data?

CPUO Reader Reader Reader
Reader

CPU1 Reader | Reader |Reader | ¢y

CPU 2 Reader| Reader Reader

CPU 3 Reader [Reader| Updater | Reader

m No explicit (and expensive) tracking of each reader (e.g. no reference counting, no
locking in readers)

m RCU uses indirect way of determining the end of all read-side sections
m In certain implementations (QSBR) read-side has zero overhead
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Read-Copy-Update (RCU)

Main mechanisms of RCU

Publishing of updates (3—4)
m Ensure that updated data reach memory before the updated pointer
m Implemented via compiler and memory barriers (no atom. inst.)
(inrcu_assign_pointer())
Accessing new versions of data (how readers traverse the list)

m Ensure that we see all the updates made before publishing
m Compiler and memory barrier in rcu_dereference ()

Waiting for all readers to finish
= [he trICky part! = synchronize_rcu()
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Read-Copy-Update (RCU)

Note: RCU and Java

m Does it makes sense to use RCU in Java?

m No, because JVM decides when to free objects by using a tracing garbage collector.
Garbage collectors have much higher overhead than RCU (stop-the-world, marking
overhead, ...).
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Read-Copy-Update (RCU)

RCU concepts and API

Read-side critical section

rcu_read_lock()/unlock()

rcu_assign_pointer()

feedback

y'4
Grace period

Reader Reader Reader Reader
Quiescent state
code outside r.s.c.s.
Reader Reader |Reader |Reader
[/
rcu_dereference()
Reader Reader Reader Reader
| Reader | Must not happen!
Reader |Reader| Updater ‘ lII
7
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Read-Copy-Update (RCU)

Using RCU

Read-side critical section

rcu_read_lock(); /* Start critical section. */

p = rcu_dereference(cptr);

/* *p guaranteed to exist. */

do_something_with(p);

rcu_read_unlock(); /* End critical section. */

/* From now on, *p might be freed by an updater!!! */

B rcu_read_lock()/unlock() and rcu_dereference () are cheap, sometimes empty
functions (nop).

m Updaters are more heavy-weight.
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Read-Copy-Update (RCU)

Pitfalls in read-side access (without RCU)

See [PerfBook, 15.3.2]

Instead of:
p = rcu_dereference(cptr):

data_t *p = cptr;
use(p->fieldl);
use(p->field2);

data_t *p = cptr;
use(p->fieldl);
use(p->field2);

N o o oA W N R

feedback

On DEC Alpha, line 1 can be executed after line
2.

Compiler can omit the load at line 5 and use the
value from line 1.

Compiler can load cptr multiple times - e.g.
cptr can be reloaded between lines 2 and 3. If
*cptr changes its value, lines 2 and 3 will use
different value of p.
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Read-Copy-Update (RCU)

Using RCU

Updater

pthread_mutex_lock(&updater_lock) ;
old_p = cptr;

*new_p = *old_p; // copy if needed
new_p->... = ...;

rcu_assign_pointer(cptr, new_p); // update
pthread_mutex_unlock(&updater_lock);

synchronize_rcu(); // wait for grace period end
free(old_p);

m Updater can use locks, because we deal with read-mostly workload, where updates are
infrequent.

m Locks are not needed if there is just one updater

m Note: synchronize_rcu() can be replaced with non-blocking call_rcu(), which calls
a callback after the grace period end
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Read-Copy-Update (RCU) » RCU implementations

Outline

Read-Copy-Update (RCU)
m RCU implementations
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Read-Copy-Update (RCU) » RCU implementations

How does it work?

m Many implementations possible
m RCU is popular due to its use in the Linux kernel, which contains several implementations
applicable to different Linux configurations (e.g. preemptible vs non-preemptible kernel).
m The following describes user space RCU implementations, which use different
mechanisms from the Linux kernel.
m Trade-off between read-side overhead and constraints of application structure
m We will look at the following implementations:
m Quiescent-state based reclamation (QSBR)
m General-purpose
m See https://www.efficios.com/pub/rcu/urcu-supp.pdf, Appendix D for more
implementations and details.
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Read-Copy-Update (RCU) » RCU implementations

Quiescent-state based reclamation (QSBR) example

W Exec, O Sleep

rcu_reader.ctr

5
[ |
£ o - & o8|l = a o
= o R e | [ == Ren s -
1 o oo a|3|a a o o
O O O Oo|]2g|0 O O O
Startup 1
rcu_register_thread |l H H N 1 1 1 1
rcu_quiescent_state | H
rcu_quiescent_state | ]
synchronize_rcu start H | 3 0
rcu_quiescent_state | l O 3
rcu_quiescent_state || 3
rcu_quiescent_state | | O 3
synchronize_rcu end L 3
synchronize_rcu start | | 5 0
rcu_quiescent_state O | ] 5
: O
rcu_quiescent_state | B O 5
rcu_quiescent_state O m 5
: O
‘synchronize_rcuend | | 5

S1SIcie

Global rcu_gp_ctr counter is incremented by
updaters.

Per-thread rcu_reader. ctr counters are updated
by readers in rcu_quiescent_state.

“W” represents execution of an RCU related
operation. At other times, the CPU can execute
other parts of the application.

Note: synchronize_rcu is not guaranteed to end
immediately when the last CPU calls
rcu_quiescent_state! We tolerate overhead for
updaters in order to reduce overhead of readers.
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Read-Copy-Update (RCU) » RCU implementations

Quiescent-state based reclamation (QSBR)

// Protects registry from concurrent accesses

pthread_mutex_t rcu_gp_lock =
PTHREAD_MUTEX_INITIALIZER;

LIST_HEAD(registry);

struct rcu_reader {

// bit 0 = online, bits 1-63 = counter

unsigned long ctr;
struct list_head node;
pthread_t tid;

};

// per-thread variable

struct rcu_reader _

void rcu_register_thread(void) {
rcu_reader.tid = pthread_self();
mutex_lock(&rcu_gp_lock) ;

list_add(&rcu_reader.node, &registry)

mutex_unlock(&rcu_gp_lock) ;
rcu_thread_online();

}

void rcu_unregister_thread(void) {
rcu_thread_offline();
mutex_lock(&rcu_gp_lock) ;
list_del(&rcu_reader.node);
mutex_unlock(&rcu_gp_lock) ;

}

feedback

_thread rcu_reader;

#define RCU_GP_ONLINE Ozl
#define RCU_GP_CTR 0z2

// global counter - note: not accessed with atomic instr.
unsigned long rcu_gp_ctr = RCU_GP_ONLINE;

static inline void rcu_read_lock(void) {}
static inline void rcu_read_unlock(void) {}

// Every thread must call this function periodically
// outside of read-side critical section.
// Note 1: There is no atomic instruction and barriers are

/7 cheaper than atomic instructions.
// Note 2: This is not called per read-side critical section
V4 only "from time to time" e.g. in the main program
V4 loop.
static inline void rcu_quiescent_state(void) {
smp_mb () ;
STORE_SHARED (rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb () ;
s

// call before a blocking system call
static inline void rcu_thread_offline(void) {
smp_mb () ;
STORE_SHARED (rcu_reader.ctr, 0);
}
// call after return from a blocking system call
static inline void rcu_thread_online(void) {
STORE_SHARED (rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb () ;
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Read-Copy-Update (RCU) » RCU implementations

Quiescent-state based reclamation (QSBR), cont.

synchronize_rcu() - the tricky part!

// Updater will call these
void synchronize_rcu(void) {
unsigned long was_online;
was_online = rcu_reader.ctr;
smp_mb () ;
if (was_online)

STORE_SHARED (rcu_reader.ctr, 0);
mutex_lock(&rcu_gp_lock) ;
update_counter_and_wait();
mutex_unlock(&rcu_gp_lock) ;
if (was_online)

STORE_SHARED (rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb() ;

}
static void update_counter_and_wait(void) {
struct rcu_reader *index;
STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR) ;
barrier();
list_for_each_entry(index, &registry, node) {
while (rcu_gp_ongoing(&index->ctr))
msleep(10);
¥
¥
static inline int rcu_gp_ongoing(unsigned long *ctr)
{
unsigned long v;
v = LOAD_SHARED (*ctr) ;
return v && (v != rcu_gp_ctr);
feedback

Properties:
m Threads must call rcu_quiescent_state() from time
to time (e.g. in the main event loop).
m Threads must call rcu_threads_off/online around
blocking calls (e.g. epoll_wait()).
B Otherwise, grace period can never end.

m Grace periods are not shared
Long waiting = higher memory consumption

m Works only on 64-bit architectures - the counter must
not overflow
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Read-Copy-Update (RCU) » RCU implementations

General-purpose RCU

Properties:
// bit 16 = 1-bit phase counter . o
#define RCU_GP_CTR_PHASE 0z10000 m Does not restrict application structure
// bits 0-15 = 16-bit nesting counter B No need to call

#define RCU_NEST MASK 0zOffff

#define RCU_NEST_COUNT Ozl rcu_quiescent_state

B No need to call

unsigned long rcu_gp_ctr = RCU_NEST_COUNT; rcu_thread_(on|off)1line around blocking syscalls
m No counter-overflow problem (different mechanism with
static inline void rcu_read_lock(void) on|y 1-bit Cgunters)
{
unsigned long tmp; m Higher read-side overhead: memory barrier (still less
tmp = rcu_reader.ctr; H H P H
it (1 (tmp & RCU.NEST MASK)) { than typical locks, i.e., atomic instructions).
STORE_SHARED (rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr)); m Supports nesting of read-side critical sections
smp_mb(); // memory barrier (fence) instr.
} else {

// Nested critical section does not need a barrier
STORE_SHARED (rcu_reader.ctr, tmp + RCU_NEST_COUNT);
}
}

static inline void rcu_read_unlock(void)
{

smp_mb(); // memory barrier instr.

STORE_SHARED (rcu_reader.ctr, rcu_reader.ctr - RCU_NEST_COUNT);
}
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Read-Copy-Update (RCU) » RCU implementations

General-purpose RCU, cont.

void synchronize_rcu(void)

{
// Grace period has two phases
smp_mb(); // memory barrier instr
mutex_lock(&rcu_gp_lock);
update_counter_and_wait(); // phase 1
barrier(); // compiler barrier
update_counter_and_wait();
mutex_unlock(&rcu_gp_lock); // phase 2
smp_mb(); // memory barrier instr

}

static void update_counter_and_wait(void)

struct rcu_reader *index;
STORE_SHARED (rcu_gp_ctr, rcu_gp_ctr ~ RCU_GP_CTR_PHASE); // flip the counter bit (~ = XOR)
barrier(); // compiler barrier
list_for_each_entry(index, &registry, node) {
while (rcu_gp_ongoing(&index->ctr))

msleep(10);
¥
}
static inline int rcu_gp_ongoing(unsigned long *ctr)
{

unsigned long v;
v = LOAD_SHARED (*ctr);

// GP phase ongoing = nesting counter > O and global (1-bit) counter != local counter
// => GP phase ends when nesting counter == 0 (quiescent state) or global (1-bit) counter == local counter
return (v & RCU_NEST_MASK) > 0 && ((v "~ rcu_gp_ctr) & RCU_GP_CTR_PHASE);

}
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General-purpose RCU example

M Exec, O Sleep rcu_reader.ctr
(0] 6|
£ o - a o Slo - o o
[ > O D 2D 11D 2 2o 2
! o oo o |3 |a@a oo o
o O o o e (&] (&] (@] (@]

Startup o1
rcu_register thread |l H H W o0 00 00 OO0 ©0=0x00000

. O1=0x00001

. 02=0x00002
rcu_read_lock | | (@]] @0=0x10000
synchronize_rcu start H | e ®1=0x10001
rcu_read_lock | O o1 @2=0x10002
rcu_read_unlock | | O o0
rcu_read_lock O o1
synchronize_rcu mid - ; ot °0 Why is not a single phase sufficient?
reu_read_unlock " O o> Synchronization would fail in one corner case (see
reu_read_lock the details at page 7 of URCU paper supplemental
rcu_read_unlock || o1 material)
rcu_read_unlock O o0 ’
synchronize_rcu end |
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Update benchmarks
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Conclusion

Outline

A Conclusion
feedback 63/65


https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 63 (Outline)&issue[description]=Insert your question/comment here.

Conclusion

Conclusion

m RCU is a scalable synchronization mechanism for hundreds/thousands of CPUs and
read-mostly workload

m We have seen an RCU-based implementation of single-linked list, but many other common
data structures can be implemented in an RCU-compatible way
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Conclusion

Appendix

m RCU is being proposed for inclusion into C++ standard:

http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p1122r2.pdf

m RCU is patented by IBM, which freely licenses the patent to copy-left software.
Userspace RCU library (copyleft - LGPL) can be used in proprietary code. Most
patents already expired; patents for some implementations are still valid.
https://lwn.net/Articles/777519/

https://www.google.com/search?q=RCU+patents
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