
B4M36ESW: Efficient software

Lecture 5: Scalable synchronization, RCU

Michal Sojka
michal.sojka@cvut.cz

March 10, 2025

Synchronization

Multi-core CPUs are today’s norm, many-core CPUs will come tomorrow

To take the advantage of such a hardware, parallel (multi-threaded) programs must be

run on them

Programs are not useful when their threads are completely independent, i.e. threads

have to communicate (synchronize)

Synchronization can be a big source of performance problems

Basic forms of synchronization:

Mutual exclusion (e.g. access to shared data)

Producer-consumer (e.g. a database waits for requests)

…

feedback 2 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 2 (Synchronization)&issue[description]=Insert your question/comment here.

Naive synchronization
Mutual exclusion

Data should be modified at most by

one thread at a time:

bool locked = false;

void func() {
while (locked == true)
{ /* busy wait */ }
locked = true;
data++;
locked = false;

}

Terminology: code in the “locked”

region is called critical section

Problems:

1 Checking and setting the lock is not atomic

2 Compiler can optimize out all accesses to locked

3 Compiler can move access to data out of the

critical section

4 Hardware can reorder memory accesses even if

compiler does not

5 Can easily deadlock

6 Busy waiting wastes energy

feedback 3 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 3 (Naive synchronization)&issue[description]=Insert your question/comment here.

Background

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 4 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 4 (Outline)&issue[description]=Insert your question/comment here.

Background

Quote

Implementing a correct synchronization primitive is like

committing the perfect crime. There are at least 50 things

that can go wrong, and if you are a highly experienced

genius, youmight be able to anticipate and handle 25 of

them.

— Paul McKenney

https://lwn.net/ml/linux-kernel/20190608160620.GH28207@linux.ibm.com/

feedback 5 / 65

https://lwn.net/ml/linux-kernel/20190608160620.GH28207@linux.ibm.com/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 5 (Quote)&issue[description]=Insert your question/comment here.

Background

Why is synchronization complex?

CPU0

L1$

L2$

store
buf.

CPU1

L1$

L2$

store
buf.

CPU2

L1$

L2$

store
buf.

CPU3

L1$

L2$

store
buf.

CPU0

Memory

CPU interconnect (bus)

Data is cached at multiple

places (distributed system).

Other CPUs do not see

changes immediately.

Cache coherency protocols

(e.g. MESIF)

Out-of-order execution

...

feedback 6 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 6 (Why is synchronization complex?)&issue[description]=Insert your question/comment here.

Background

Event ordering in distributed systems

Event = memory read or write operation

Events can be ordered according to the happens before

relation

Events in a single thread have total ordering (you can always

say which came first or second)

The “happens before” relation is a partial ordering, i.e., it is

possible to have two events P and Q such that neither

happens before the other.
Events in multiple threads can be ordered only if there exists a
happens before relation between the operations in the
threads.

Only some operations (CPU instructions) provide happens

before relation

See atomic operations (later slide) with release and acquire

semantics
For details see: https://lwn.net/Articles/844224/

Thread 1 Thread 2
mutex.lock()

|
| happens before
↓

data++;
|
↓

mutex.unlock() —→ mutex.lock()
|
↓

data++;
|
↓

mutex.unlock()

feedback 7 / 65

https://lwn.net/Articles/844224/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 7 (Event ordering in distributed systems)&issue[description]=Insert your question/comment here.

Naive synchronization problems

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 8 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 8 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 9 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 9 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Atomic operations

Example of non-atomic increment:

C expression: data++;
Assembler (x86): inc ($data) – atomic (uninterruptible) only on a single CPU
Hardware (for simplicity without caches): memory bus read, ALU, memory bus write

CPU0 CPU1 data
bus read 0
ALU bus read 0
bus write ALU 1

bus write 1
Atomic operations ensure that the operation (typically read-modify-write) is atomic
(uninterruptible) even at the hardware (bus) level.

Typical atomic operation: compare-and-swap (CAS), on x86: cmpxchg instruction

In C: TYPE __atomic_exchange_n(TYPE *ptr, TYPE val, int memorder)
Atomically set *ptr to val and return old value of *ptr.
void lock() {

while (locked == true)
{ /* busy wait */ }
locked = true;

}

⇒

void lock() {
while (__atomic_exchange_n(&locked, true, …) == true)
{ /* busy wait */ }

}feedback 10 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 10 (Atomic operations)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Atomic operations in C and C++

For long time, atomic operations were not standardized in C/C++

Solution: Incompatible compiler extensions, inline assembler

C11, C++11 introduced thread-aware memory model and defined platform independent

atomic operations

C11: #include <stdatomic.h>, atomic_* functions
C++11

#include <atomic>
std::atomic template
Example:

std::atomic<int> x;
x++; // atomic increment

Beware: Atomic operations are slower than non-atomic ones!

feedback 11 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 11 (Atomic operations in C and C++)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Why are atomic operations slower?

CPU0

L1$

L2$

store
buf.

CPU1

L1$

L2$

store
buf.

CPU2

L1$

L2$

store
buf.

CPU3

L1$

L2$

store
buf.

CPU0

Memory

CPU interconnect (bus)

The CPU performing the atomic

operation must ensure that

other CPUs do not have the

same value cached.

This involves communication

(synchronization) with other

CPUs.

Why? Atomic operations

require exclusive access (in

terms of cache coherency

protocol) to the memory

location, which, in the worst

case, requires broadcast over

the CPU interconnect bus.
feedback 12 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 12 (Why are atomic operations slower?)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Non-atomic data manipulation

Cost of atomic operations & barriers

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio

Clock period 0.4 1.0

“Best-case” CAS 12.2 33.8

Best-case lock 25.6 71.2

Single cache miss 12.9 35.8

CAS cache miss 7.0 19.4

Single cache miss (off-core) 31.2 86.6

CAS cache miss (off-core) 31.2 86.5

Single cache miss (off-socket) 92.4 256.7

CAS cache miss (off-socket) 95.9 266.4
Source: Paul E. McKenney, IBM

Atomic operations are costly

(here 19–266 times slower than

non-atomic operations)

Barriers are typically cheaper

(weak barriers more that full

barriers)

Barrier: machine instruction that

orders memory operation in a single

thread (see later slide).

feedback 13 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 13 (Cost of atomic operations & barriers)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Unwanted compiler optimizations

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 14 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 14 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Unwanted compiler optimizations

Compiler optimizations

bool locked;

while (locked) {}
locked = true;
data++;
locked = false;

⇒

#define barrier() asm volatile("" : : : "memory")
volatile bool locked;

while (locked) {}
locked = true;
barrier();
data++;
barrier();
locked = false;

Compiler expects the memory is only

modified by the single threaded program

being compiled (unless it uses atomic

operations)
The locked variable seems to be useless
⇒ optimize out

prevented by the volatile keyword

Compiler is free to reorder operations as
long as the result of single-threaded
computation is the same

barrier() prevents the compiler from

reordering memory operations before and

after the barrier.

We distinguish compiler barriers (as

above) and CPU barriers (instructions,

see later)feedback 15 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 15 (Compiler optimizations)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Unwanted compiler optimizations

Compiler optimizations cont.

Defining the variable volatile makes all accesses “volatile” i.e. slow.

Sometimes, we need only certain accesses to have volatile semantics and the rest can

be optimized:

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define LOAD_SHARED(p) ACCESS_ONCE(p)
#define STORE_SHARED(x, v) ({ ACCESS_ONCE(x) = (v); })

#define barrier() asm volatile("" : : : "memory")
See examples in later slides (RCU implementation).

The macro barrier is only a compiler barrier, not hardware barrier, i.e., the compiler will

not reorder the generated instructions, but CPU can still reorder them during execution.

feedback 16 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 16 (Compiler optimizations cont.)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Reordering at hardware level

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 17 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 17 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Reordering at hardware level

Hardware reordering

Different CPU architectures implement different memory consistency models

Problem: Some operations can be reordered with respect to other operations

Type A
lp
h
a

A
R
M
v
7

P
A
-R
IS
C

P
O
W
E
R

S
P
A
R
C
R
M
O

S
P
A
R
C
P
S
O

S
P
A
R
C
T
S
O

x
8
6

x
8
6
o
o
s
to
re

A
M
D
6
4

IA
-6
4

z
/A
rc
h
it
e
c
tu
re

Loads → loads Y Y Y Y Y N N N Y N Y N

Loads → stores Y Y Y Y Y N N N Y N Y N

Stores → stores Y Y Y Y Y Y N N Y N Y N

Stores → loads Y Y Y Y Y Y Y Y Y Y Y Y

Atomic → loads Y Y N Y Y N N N N N Y N

Atomic → stores Y Y N Y Y Y N N N N Y N

Dependent loads Y N N N N N N N N N N N

Incoherent inst. cache pipeline Y Y N Y Y Y Y Y Y N Y

Source: Wikipedia

x86 can reorder stores after loads, e.g. data variable from slide 15 can be read before other
CPUs see locked set to true!

Why? Stores may have to wait for cache-line ownership in the store buffer. Not waiting with

subsequent reads improves performance.

Solution: Insert memory barrier instructions.

feedback 18 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 18 (Hardware reordering)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Reordering at hardware level

Barrier (fence) instructions

Ensure that all memory operations issued in front of the barrier are completed before

issuing any memory operation after the barrier

Some architectures provide more barrier types:

Full barriers prevents reordering of all memory operations,

weak barriers prevents reordering of either loads or stores only.

Examples: mfence (full barrier), lfence (weak barrier) instructions (on x86), dmb (on
ARM).

RCU implementations at the end of this lecture use smp_mb() function, which is a
platform independent wrapper of these instructions.

feedback 19 / 65

https://www.felixcloutier.com/x86/mfence
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CIHGHHIE.html
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 19 (Barrier (fence) instructions)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Reordering at hardware level

Specifying memory ordering requirements in C/C++

atomic::load/store method’s order parameter specifies how regular, non-atomic memory accesses are to

be ordered around an atomic operation:

relaxed: No overhead, no order guarantee

(only atomicity)

consume

acquire: No reads or writes in the current

thread can be reordered before this load. All

writes in other threads that release the same

atomic variable are visible in the current thread

release: No reads or writes in the current

thread can be reordered after this store. All

writes in the current thread are visible in other

threads that acquire the same atomic variable

acq_rel,

seq_cst: high overhead, sequential

consistency

Depending on the CPU architecture, different orders cause the compiler to generate barrier instructions
(e.g., lfence on x86)

“Happens before” relation created by acquire/release ordering

int data;
std::atomic<int> owner;

Thread 1 Thread 2
data = 1
owner.store(2, std::memory_order_release) —→ if (owner.load(std::memory_order_acquire) == 2)
read(data)

feedback 20 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 20 (Specifying memory ordering requirements in C/C++)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Deadlock

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 21 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 21 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Deadlock

Deadlock

Example:

Single-core system

Spinning lock

Two threads low- (LP) and high-priority (HP)

LP_thread HP_thread
————————— —————————
lock();
data++;

→ preemption →
lock(); // deadlock

Solution: When the lock is not available, ask the OS scheduler to put your thread to
sleep and wake you up after the lock is available

Problem: atomicity of checking the lock and going to sleep

Requires implementation in the OS kernel

feedback 22 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 22 (Deadlock)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Busy waiting (spinning)

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 23 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 23 (Outline)&issue[description]=Insert your question/comment here.

Naive synchronization problems » Busy waiting (spinning)

Spinlocks

The lock (from our initial example) that does not involve OS scheduler and waits by

spinning (looping, busy waiting) is called a spin lock.

Applications almost never need to use spin locks.

It wastes energy, CPU time and can lead to deadlocks (see above).

Spin locks are, however, used in operating system kernels in contexts, where sleeping
is not allowed.

Only threads (tasks, processes) can sleep.

Interrupt handlers cannot sleep.

Hence device drivers often use spin locks.

OS scheduler must also use spin locks, because it cannot put itself to sleep.

feedback 24 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 24 (Spinlocks)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking)

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 25 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 25 (Outline)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking)

Mutex

Most-common synchronization primitive

Simple API (lock/unlock)

Can be implemented in different ways

Kernel semaphore

Futex

...

All implementations (at least on multi-core systems) involve atomic instructions.

Remember: Atomic instructions can be slow!

Sleeping is implemented by interacting with the OS scheduler.

feedback 26 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 26 (Mutex)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Kernel semaphores

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 27 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 27 (Outline)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Kernel semaphores

Kernel semaphores

Lock (mutex) implementation inside the OS kernel

Each system call adds overhead (≈ 100 clock cycles on modern HW)

It is preferable to use “fine-grain” locking, i.e. locks protect as little data as possible to

prevent lock contention.

If fine-grain locking is effective, the lock is not contended and threads rarely have to

sleep, but always pay the syscall overhead!

That’s not efficient – the solution in Linux is called futex.

feedback 28 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 28 (Kernel semaphores)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Futex

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 29 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 29 (Outline)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Futex

Futex
Fast Userspace Mutex

Uncontended mutex never goes to the

kernel

A futex consists of an atomic counter in

user space memory and a wait queue in

the kernel.

The counter is updated with atomic

instructions (executed by user space

code) cmpxchg(val, expct, new) → prev

futex_wait() and futex_wake() are
system calls that are called only in case

of contention, when sleeping is needed

class mutex {
public:
mutex() : val (0) { }

void lock() {
int c;
if ((c = cmpxchg (val, 0, 1)) != 0) {

if (c != 2)
c = xchg (val, 2);

while (c != 0) {
futex_wait (&val, 2);
c = xchg (val, 2);

}
}

}
void unlock() {

if (atomic_dec (val) != 1) {
val = 0;
futex_wake (&val, 1);

}
}

private:
int val;

};

U. Drepper, Futexes Are Tricky, 2011,
Online: https://www.akkadia.org/drepper/futex.pdffeedback 30 / 65

https://www.akkadia.org/drepper/futex.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 30 (Futex)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Futex

Futex uses

Futex is a primitive mechanism that can be used to implement the following higher-level

synchronization mechanisms:

Mutexes

Semaphores

Conditional variables

Thread barriers

Read-write locks

Today, pthread_mutex_t in Linux is implemented via futex.
JVM’s synchronization via Mark word and thin/fat locking is conceptually the same as

futex (see next lectures about Java)

feedback 31 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 31 (Futex uses)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Futex

Why are futexes tricky?

What happens when a futex is shared between processes and one process

unexpectedly crashes, when it has locked the mutex?

Deadlock! The user space counter stays in the locked state, because the only one who

can unlock it has crashed. Since the kernel is not aware about the locking operation (in

the uncontended case), it cannot help here.

Linux solves this problem with so called “Robust futex” implementation. The locations

of futex counters are registered with the kernel at initialization time. When the process

crashes, the kernel scans its user space memory for locked mutexes and unlocks them.

feedback 32 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 32 (Why are futexes tricky?)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 33 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 33 (Outline)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Cost of atomic operations & laws of physics
System with 4 sockets, each with 4 CPU cores

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Speed of light RT in 1 cycle @ 3 GHz = 5 cm

Speed of electrons in transisors: 0.03–0.3CAll CPUs executing atomic increment of global variableAll CPUs executing atomic increment of per-cpu variable

feedback 34 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 34 (Cost of atomic operations & laws of physics)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Cost of atomic operations & laws of physics
System with 4 sockets, each with 4 CPU cores

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Speed of light RT in 1 cycle @ 3 GHz = 5 cm

Speed of electrons in transisors: 0.03–0.3C

All CPUs executing atomic increment of global variableAll CPUs executing atomic increment of per-cpu variable

feedback 34 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 34 (Cost of atomic operations & laws of physics)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Cost of atomic operations & laws of physics
System with 4 sockets, each with 4 CPU cores

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Speed of light RT in 1 cycle @ 3 GHz = 5 cm

Speed of electrons in transisors: 0.03–0.3C

All CPUs executing atomic increment of global variable

All CPUs executing atomic increment of per-cpu variable

Every CPU experiences a cache miss, because other CPUs access the variable as well

⇒ Sequential execution

feedback 34 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 34 (Cost of atomic operations & laws of physics)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Cost of atomic operations & laws of physics
System with 4 sockets, each with 4 CPU cores

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Speed of light RT in 1 cycle @ 3 GHz = 5 cm

Speed of electrons in transisors: 0.03–0.3CAll CPUs executing atomic increment of global variable

All CPUs executing atomic increment of per-cpu variable

No cache miss⇒ much faster & parallel

feedback 34 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 34 (Cost of atomic operations & laws of physics)&issue[description]=Insert your question/comment here.

Real-world synchronization (locking) » Cost of atomic operations and barriers

Locking overhead

Classical locks are typically implemented with atomic

instructions and ensure that lock manipulation is not

reordered with critical section content.

pthread_mutex_lock(mutex);
x++;
pthread_mutex_unlock(mutex);

Uncontended case: during lock(), mutex is not in the

cache, during unlock() it is

Contended case: mutex is not in the cache even during

unlock, because there is (probably) another CPU trying to

lock the mutex and thus “stealing” the lock from

mutex-owner’s cache

Single-instruction critical sections protected by a lock

257 cycles
(worst case)

1
cycle

257 cycles

1
cycle

257 cycles

Uncontended

Contended,
No Spinning

Lock

Lock

Unlock

Unlock

x++

feedback 35 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 35 (Locking overhead)&issue[description]=Insert your question/comment here.

Read-mostly workload

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 36 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 36 (Outline)&issue[description]=Insert your question/comment here.

Read-mostly workload

The problem of mutex

Mutual exclusion in massively parallel read-mostly workload

1 Lock/unlock overhead

2 Dead time during updates

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Updater

Dead
Time!!! Reader

Reader

feedback 37 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 37 (The problem of mutex)&issue[description]=Insert your question/comment here.

Read-mostly workload

Read-mostly workload

Many real-world workloads are “read-mostly”

Caching – Most users only read the data. The cache is updated only from time to time
(new article is published, etc.)

Web site cache (template rendering)

Content delivery network (CDN)

File system access

Domain Name System (DNS)

…

Maintaining consistency while updating – synchronization between readers and

updaters (writers)

feedback 38 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 38 (Read-mostly workload)&issue[description]=Insert your question/comment here.

Read-mostly workload

Read-Write lock

Classical solution – read-write lock

Multiple readers can read simultaneously

Update blocks all readers

Wait

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader

Reader
(updated)

Reader
(updated)

Reader
(updated)

Reader
(updated)

lo
ck

u
n
lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck

u
n
lo
ck Reader

(updated)

lo
ck

u
n
lo
ck

Wait

Wait

Wait

Can be implemented on top of mutex(es)

Scales badly due to atomic instructions in lock/unlock.
feedback 39 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 39 (Read-Write lock)&issue[description]=Insert your question/comment here.

Read-mostly workload

Simple RW-lock implementation
Readers have priority over writers

struct rwlock {
semaphore_t sem;
mutex_t readers_lock;
unsigned readers_active;

};

void write_lock(rwlock &rwl) {
rwl.sem.wait();

}

void write_unlock(rwlock &rwl) {
rwl.sem.post();

}

void read_lock(rwlock &rwl) {
rwl.readers_lock.lock();
rwl.readers_active++;
if (rwl.readers_active == 1)
rwl.sem.wait();

rwl.readers_lock.unlock();
}

void read_unlock(rwlock &rwl) {
rwl.readers_lock.lock();
rwl.readers_active--;
if (rwl.readers_active == 0)
rwl.sem.post();

rwl.readers_lock.unlock();
}

feedback 40 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 40 (Simple RW-lock implementation)&issue[description]=Insert your question/comment here.

Read-mostly workload

Simple RW-lock implementation
Writers have priority over readers

struct rwlock {
mutex_t lock;
cond_t cond;
unsigned rd_active;
unsigned wr_waiting;
bool wr_active;

};
void write_lock(rwlock &rwl) {

rwl.lock.wait();
rwl.wr_waiting++;
while (rwl.rd_active || rwl.wr_active)
cond_wait(rwl.cond, rwl.lock);

rwl.wr_waiting--;
rwl.wr_active = true;
rwl.lock.unlock();

}
void write_unlock(rwlock &rwl) {

rwl.lock.wait();
rwl.wr_active = false;
cond_broadcast(rwl.cond);
rwl.lock.unlock();

}

void read_lock(rwlock &rwl) {
rwl.lock.lock();
while (rwl.wr_waiting || rwl.wr_active)

cond_wait(rwl.cond, rwl.lock);
rwl.rd_active++;
rwl.lock.unlock();

}

void read_unlock(rwlock &rwl) {
rwl.lock.lock();
rwl.rd_active--;
if (rwl.rd_active == 0)

cond_broadcast(rwl.cond);
rwl.lock.unlock();

}

feedback 41 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 41 (Simple RW-lock implementation)&issue[description]=Insert your question/comment here.

Read-mostly workload

We want this

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader

Reader

Reader

Reader

Reader
(updated)

Reader
(updated)

Readers have no overhead

Updater does not block readers

Is that possible? Yes

For what cost? See next slides

feedback 42 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 42 (We want this)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 43 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 43 (Outline)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Read-side scalability of synchronization primitives

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

7e+09

8e+09

9e+09

0 10 20 30 40 50 60 70

N
um

be
r o

f r
ea

ds
 /

se
co

nd

Number of cores

QSBRCU
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread mutex
pthread reader-writer lock

RCU is scalable –
typically it scales almost
linearly up to hundreds or
thousands of CPUs

This is possible due to

RCU not using atomic

instructions on the read

side.

Atomic instructions are

not needed because no

two threads write to the

same variable.

Locking does not scale

(see next slide)

feedback 44 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 44 (Read-side scalability of synchronization primitives)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Locking scalability

Zoomed in version of the previous graph

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06

0 10 20 30 40 50 60 70

N
um

be
r o

f r
ea

ds
 /

se
co

nd

Number of cores

pthread mutex
pthread reader-writer lock

feedback 45 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 45 (Locking scalability)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Updating an RCU-protected list

A

B

C

1.

A

B

C

B

2.

A

B

C

D

3.

A

B

C

D

4.

A

C

D

5.

1 Original list

2 Copy B

3 Update B to D

4 Make the updated element visible to readers

5 Wait after all readers stop accessing B and free it

Steps 1–4 are trivial, making

step 5 efficient is why RCU is

needed!

RCU converts a scalability

problem into a garbage

collection problem.

feedback 46 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 46 (Updating an RCU-protected list)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

How does RCU know when no reader access old data?

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader

Reader

Reader

Reader

Reader
(updated)

Reader
(updated)

No explicit (and expensive) tracking of each reader (e.g. no reference counting, no

locking in readers)

RCU uses indirect way of determining the end of all read-side sections

In certain implementations (QSBR) read-side has zero overhead

feedback 47 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 47 (How does RCU know when no reader access old data?)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Main mechanisms of RCU

1 Publishing of updates (3→4)

Ensure that updated data reach memory before the updated pointer

Implemented via compiler and memory barriers (no atom. inst.)

(in rcu_assign_pointer())
2 Accessing new versions of data (how readers traverse the list)

Ensure that we see all the updates made before publishing

Compiler and memory barrier in rcu_dereference()
3 Waiting for all readers to finish

The tricky part! ⇒ synchronize_rcu()

feedback 48 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 48 (Main mechanisms of RCU)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Note: RCU and Java

Does it makes sense to use RCU in Java?

No, because JVM decides when to free objects by using a tracing garbage collector.

Garbage collectors have much higher overhead than RCU (stop-the-world, marking

overhead, ...).

feedback 49 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 49 (Note: RCU and Java)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

RCU concepts and API

Grace period

started and waited by synchronize_rcu()

Reader Must not happen!

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader

Reader

Reader

Reader

Reader

Reader

Free

Reader

Read-side critical section

rcu_read_lock()/unlock()

rcu_dereference()

Quiescent state
code outside r.s.c.s.

rcu_assign_pointer()
feedback 50 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 50 (RCU concepts and API)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Using RCU
Read-side critical section

rcu_read_lock(); /* Start critical section. */
p = rcu_dereference(cptr);
/* *p guaranteed to exist. */
do_something_with(p);
rcu_read_unlock(); /* End critical section. */
/* From now on, *p might be freed by an updater!!! */

rcu_read_lock()/unlock() and rcu_dereference() are cheap, sometimes empty
functions (nop).

Updaters are more heavy-weight.

feedback 51 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 51 (Using RCU)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Pitfalls in read-side access (without RCU)
See [PerfBook, 15.3.2]

Instead of:

p = rcu_dereference(cptr):

Example

1 data_t *p = cptr;
2 use(p->field1);
3 use(p->field2);
4 ...
5 data_t *p = cptr;
6 use(p->field1);
7 use(p->field2);

1 On DEC Alpha, line 1 can be executed after line

2.

2 Compiler can omit the load at line 5 and use the

value from line 1.

3 Compiler can load cptr multiple times – e.g.
cptr can be reloaded between lines 2 and 3. If
*cptr changes its value, lines 2 and 3 will use
different value of p.

feedback 52 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 52 (Pitfalls in read-side access (without RCU))&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU)

Using RCU
Updater

pthread_mutex_lock(&updater_lock);
old_p = cptr;
*new_p = *old_p; // copy if needed
new_p->... = ...;
rcu_assign_pointer(cptr, new_p); // update
pthread_mutex_unlock(&updater_lock);
synchronize_rcu(); // wait for grace period end
free(old_p);

Updater can use locks, because we deal with read-mostly workload, where updates are

infrequent.

Locks are not needed if there is just one updater

Note: synchronize_rcu() can be replaced with non-blocking call_rcu(), which calls
a callback after the grace period end

feedback 53 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 53 (Using RCU)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 54 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 54 (Outline)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

How does it work?

Many implementations possible

RCU is popular due to its use in the Linux kernel, which contains several implementations

applicable to different Linux configurations (e.g. preemptible vs non-preemptible kernel).

The following describes user space RCU implementations, which use different

mechanisms from the Linux kernel.

Trade-off between read-side overhead and constraints of application structure

We will look at the following implementations:

Quiescent-state based reclamation (QSBR)

General-purpose

See https://www.efficios.com/pub/rcu/urcu-supp.pdf, Appendix D for more

implementations and details.

feedback 55 / 65

https://www.efficios.com/pub/rcu/urcu-supp.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 55 (How does it work?)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

Quiescent-state based reclamation (QSBR) example

■ Exec, □ Sleep rcu_reader.ctr

←
T
im
e

C
P
U
0

C
P
U
1

C
P
U
2

C
P
U
3

rc
u
_
g
p
_
c
tr

C
P
U
0

C
P
U
1

C
P
U
2

C
P
U
3

Startup 1

rcu_register_thread ■ ■ ■ ■ 1 1 1 1

rcu_quiescent_state ■

rcu_quiescent_state ■

synchronize_rcu start ■ 3 0

rcu_quiescent_state ■ □ 3

rcu_quiescent_state ■ □ 3

rcu_quiescent_state ■ □ 3

synchronize_rcu end ■ 3
...

synchronize_rcu start ■ 5 0

rcu_quiescent_state □ ■ 5

: □

rcu_quiescent_state ■ □ 5

rcu_quiescent_state □ ■ 5

: □

synchronize_rcu end ■ 5

Global rcu_gp_ctr counter is incremented by
updaters.

Per-thread rcu_reader.ctr counters are updated
by readers in rcu_quiescent_state.

“■” represents execution of an RCU related

operation. At other times, the CPU can execute

other parts of the application.

Note: synchronize_rcu is not guaranteed to end
immediately when the last CPU calls

rcu_quiescent_state! We tolerate overhead for

updaters in order to reduce overhead of readers.

feedback 56 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 56 (Quiescent-state based reclamation (QSBR) example)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

Quiescent-state based reclamation (QSBR)
// Protects registry from concurrent accesses
pthread_mutex_t rcu_gp_lock =

PTHREAD_MUTEX_INITIALIZER;

LIST_HEAD(registry);

struct rcu_reader {
// bit 0 = online, bits 1-63 = counter
unsigned long ctr;
struct list_head node;
pthread_t tid;

};

// per-thread variable
struct rcu_reader __thread rcu_reader;

void rcu_register_thread(void) {
rcu_reader.tid = pthread_self();
mutex_lock(&rcu_gp_lock);
list_add(&rcu_reader.node, ®istry);
mutex_unlock(&rcu_gp_lock);
rcu_thread_online();

}
void rcu_unregister_thread(void) {

rcu_thread_offline();
mutex_lock(&rcu_gp_lock);
list_del(&rcu_reader.node);
mutex_unlock(&rcu_gp_lock);

}

#define RCU_GP_ONLINE 0x1
#define RCU_GP_CTR 0x2

// global counter - note: not accessed with atomic instr.
unsigned long rcu_gp_ctr = RCU_GP_ONLINE;

static inline void rcu_read_lock(void) {}
static inline void rcu_read_unlock(void) {}

// Every thread must call this function periodically
// outside of read-side critical section.
// Note 1: There is no atomic instruction and barriers are
// cheaper than atomic instructions.
// Note 2: This is not called per read-side critical section
// only "from time to time" e.g. in the main program
// loop.
static inline void rcu_quiescent_state(void) {
smp_mb();
STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb();

}
// call before a blocking system call
static inline void rcu_thread_offline(void) {
smp_mb();
STORE_SHARED(rcu_reader.ctr, 0);

}
// call after return from a blocking system call
static inline void rcu_thread_online(void) {
STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb();

}feedback 57 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 57 (Quiescent-state based reclamation (QSBR))&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

Quiescent-state based reclamation (QSBR), cont.
synchronize_rcu() – the tricky part!

// Updater will call these
void synchronize_rcu(void) {

unsigned long was_online;
was_online = rcu_reader.ctr;
smp_mb();
if (was_online)

STORE_SHARED(rcu_reader.ctr, 0);
mutex_lock(&rcu_gp_lock);
update_counter_and_wait();
mutex_unlock(&rcu_gp_lock);
if (was_online)

STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb();

}
static void update_counter_and_wait(void) {

struct rcu_reader *index;
STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
barrier();
list_for_each_entry(index, ®istry, node) {

while (rcu_gp_ongoing(&index->ctr))
msleep(10);

}
}
static inline int rcu_gp_ongoing(unsigned long *ctr)
{

unsigned long v;
v = LOAD_SHARED(*ctr);
return v && (v != rcu_gp_ctr);

}

Properties:

Threads must call rcu_quiescent_state() from time

to time (e.g. in the main event loop).

Threads must call rcu_threads_off/online around
blocking calls (e.g. epoll_wait()).

Otherwise, grace period can never end.

Grace periods are not shared

Long waiting⇒ higher memory consumption

Works only on 64-bit architectures – the counter must

not overflow

feedback 58 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 58 (Quiescent-state based reclamation (QSBR), cont.)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

General-purpose RCU

// bit 16 = 1-bit phase counter
#define RCU_GP_CTR_PHASE 0x10000
// bits 0-15 = 16-bit nesting counter
#define RCU_NEST_MASK 0x0ffff
#define RCU_NEST_COUNT 0x1

unsigned long rcu_gp_ctr = RCU_NEST_COUNT;

static inline void rcu_read_lock(void)
{

unsigned long tmp;
tmp = rcu_reader.ctr;
if (!(tmp & RCU_NEST_MASK)) {
STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb(); // memory barrier (fence) instr.

} else {
// Nested critical section does not need a barrier
STORE_SHARED(rcu_reader.ctr, tmp + RCU_NEST_COUNT);

}
}

static inline void rcu_read_unlock(void)
{

smp_mb(); // memory barrier instr.
STORE_SHARED(rcu_reader.ctr, rcu_reader.ctr - RCU_NEST_COUNT);

}

Properties:

Does not restrict application structure

No need to call

rcu_quiescent_state
No need to call

rcu_thread_(on|off)line around blocking syscalls

No counter-overflow problem (different mechanism with

only 1-bit counters)

Higher read-side overhead: memory barrier (still less

than typical locks, i.e., atomic instructions).

Supports nesting of read-side critical sections

feedback 59 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 59 (General-purpose RCU)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

General-purpose RCU, cont.
void synchronize_rcu(void)
{

// Grace period has two phases
smp_mb(); // memory barrier instr.
mutex_lock(&rcu_gp_lock);
update_counter_and_wait(); // phase 1
barrier(); // compiler barrier
update_counter_and_wait();
mutex_unlock(&rcu_gp_lock); // phase 2
smp_mb(); // memory barrier instr.

}
static void update_counter_and_wait(void)
{

struct rcu_reader *index;
STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr ˆ RCU_GP_CTR_PHASE); // flip the counter bit (^ = XOR)
barrier(); // compiler barrier
list_for_each_entry(index, ®istry, node) {

while (rcu_gp_ongoing(&index->ctr))
msleep(10);

}
}
static inline int rcu_gp_ongoing(unsigned long *ctr)
{

unsigned long v;
v = LOAD_SHARED(*ctr);
// GP phase ongoing = nesting counter > 0 and global (1-bit) counter != local counter
// => GP phase ends when nesting counter == 0 (quiescent state) or global (1-bit) counter == local counter
return (v & RCU_NEST_MASK) > 0 && ((v ˆ rcu_gp_ctr) & RCU_GP_CTR_PHASE);

}

feedback 60 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 60 (General-purpose RCU, cont.)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

General-purpose RCU example

■ Exec, □ Sleep rcu_reader.ctr

←
T
im
e

C
P
U
0

C
P
U
1

C
P
U
2

C
P
U
3

rc
u
_
g
p
_
c
tr

C
P
U
0

C
P
U
1

C
P
U
2

C
P
U
3

Startup ○1

rcu_register_thread ■ ■ ■ ■ ○0 ○0 ○0 ○0
...

rcu_read_lock ■ ○1

synchronize_rcu start ■ ●1

rcu_read_lock ■ □ ●1

rcu_read_unlock ■ □ ○0

rcu_read_lock ■ □ ●1

synchronize_rcu mid ■ ○1

rcu_read_unlock ■ □ ●0

rcu_read_lock ■ □ ●2

rcu_read_unlock ■ □ ●1

rcu_read_unlock ■ □ ●0

synchronize_rcu end ■

○0=0x00000

○1=0x00001

○2=0x00002

●0=0x10000

●1=0x10001

●2=0x10002

Why is not a single phase sufficient?

Synchronization would fail in one corner case (see

the details at page 7 of URCU paper supplemental

material).

feedback 61 / 65

https://www.efficios.com/pub/rcu/urcu-supp.pdf
https://www.efficios.com/pub/rcu/urcu-supp.pdf
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 61 (General-purpose RCU example)&issue[description]=Insert your question/comment here.

Read-Copy-Update (RCU) » RCU implementations

Update benchmarks

feedback 62 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 62 (Update benchmarks)&issue[description]=Insert your question/comment here.

Conclusion

Outline

1 Background

2 Naive synchronization problems

Non-atomic data manipulation

Unwanted compiler optimizations

Reordering at hardware level

Deadlock

Busy waiting (spinning)

3 Real-world synchronization (locking)

Kernel semaphores

Futex

Cost of atomic operations and barriers

4 Read-mostly workload

5 Read-Copy-Update (RCU)

RCU implementations

6 Conclusion
feedback 63 / 65

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 63 (Outline)&issue[description]=Insert your question/comment here.

Conclusion

Conclusion

RCU is a scalable synchronization mechanism for hundreds/thousands of CPUs and

read-mostly workload

We have seen an RCU-based implementation of single-linked list, but many other common

data structures can be implemented in an RCU-compatible way

References

[PerfBook] Paul E. McKenney et al.: Is Parallel Programming Hard, And, If So, What Can You Do About It?

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

Desnoyers, Mathieu, McKenney, Paul. E., Stern, Alan S., Dagenais, Michel R. and Walpole, Jonathan,

User-Level Implementations of Read-Copy Update. IEEE Transaction on Parallel and Distributed Systems, 23

(2): 375-382 (2012).
https://www.efficios.com/publications

(especially: https://www.efficios.com/pub/rcu/urcu-main.pdf, https://www.efficios.com/pub/rcu/urcu-supp.pdf)

Paul E. McKenney, What Is RCU? Guest Lecture for Technische Universität Dresden

http://www2.rdrop.com/users/paulmck/RCU/RCU.2014.05.18a.TU-Dresden.pdf

Paolo Bonzini: An introduction to lockless algorithms https://lwn.net/Articles/844224/

feedback 64 / 65

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.efficios.com/publications
https://www.efficios.com/pub/rcu/urcu-main.pdf
https://www.efficios.com/pub/rcu/urcu-supp.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2014.05.18a.TU-Dresden.pdf
https://lwn.net/Articles/844224/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 64 (Conclusion)&issue[description]=Insert your question/comment here.

Conclusion

Appendix

RCU is being proposed for inclusion into C++ standard:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1122r2.pdf

RCU is patented by IBM, which freely licenses the patent to copy-left software.

Userspace RCU library (copyleft – LGPL) can be used in proprietary code. Most

patents already expired; patents for some implementations are still valid.

https://lwn.net/Articles/777519/

https://www.google.com/search?q=RCU+patents

feedback 65 / 65

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1122r2.pdf
https://lwn.net/Articles/777519/
https://www.google.com/search?q=RCU+patents
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture synchronization, slide 65 (Appendix)&issue[description]=Insert your question/comment here.

	Background
	Naive synchronization problems
	Non-atomic data manipulation
	Unwanted compiler optimizations
	Reordering at hardware level
	Deadlock
	Busy waiting (spinning)

	Real-world synchronization (locking)
	Kernel semaphores
	Futex
	Cost of atomic operations and barriers

	Read-mostly workload
	Read-Copy-Update (RCU)
	RCU implementations

	Conclusion

