
B4M36ESW: Efficient software

Lecture 1: Introduction

Michal Sojka
michal.sojka@cvut.cz

February 17, 2025



About the course

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 2 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 2 (Outline)&issue[description]=Insert your question/comment here.


About the course

About this course
https://esw.pages.fel.cvut.cz/

Teachers

Michal Sojka C/C++ (or Rust),

embedded systems,

operating systems

David Šišlák Java, servers, …

Scope

Writing fast programs

Single (multi-core) computer, no distributed systems/cloud

Interaction between software and hardware

Programming languages: no runtime (C/C++/Rust), with

runtime (Java)

How general concepts apply to programs in different

programming languages i.e. how to use hardware

efficiently from C/C++/Rust and Java
The course is not about comparing C/C++/Rust with Java,

but you should be able to make this comparison yourself at

the end.

feedback 3 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 3 (About this course)&issue[description]=Insert your question/comment here.


About the course

Grading

Exercises

8 small tasks

semestral work (implemented in any programming language)

Maximum 60 points

Minimum 30 points

Exam

Written test: max. 30 points

Voluntary oral exam: 10 points

Minimum: 20 points

feedback 4 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 4 (Grading)&issue[description]=Insert your question/comment here.


About the course

Lectures

Slides accompany lectures, they are not self-standing documents.

We would like to get your feedback:

questions (even stupid)

typos notifications

error reports

…

Please use the feedback link on every slide or file the issue directly at

https://gitlab.fel.cvut.cz/esw/lectures/issues/new.

feedback 5 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 5 (Lectures)&issue[description]=Insert your question/comment here.
https://gitlab.fel.cvut.cz/esw/lectures/issues/new
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 5 (Lectures)&issue[description]=Insert your question/comment here.


Basics

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 6 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 6 (Outline)&issue[description]=Insert your question/comment here.


Basics

Efficient software

There is no theory of how to write efficient software

Writing efficient software is about:

Knowledge of all layers involved

Experience in knowing when and how performance can be a problem

Skill in detecting and zooming in on the problems

A good dose of common sense

Best practices

Patterns that occur regularly

Typical mistakes

feedback 7 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 7 (Efficient software)&issue[description]=Insert your question/comment here.


Basics

Layers involved in software execution

Hardware
(CPUs, busses, memory, caches)

OS

C/C++ source code

C/C++ compileras
m

Native program

Java program

Java source code

Java compiler

JVM/native libraries

JIT-
compiled

code

In the end, everything is executed by hardware

Majority of this course is about how to tailor the

code to use the hardware efficiently

C/C++ source code is transformed into native
(machine) code by the compiler

Compiler tries to optimize the generated code

Optimizations are often only heuristics

Native code is executed directly by HW or invokes

OS services

feedback 8 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 8 (Layers involved in software execution)&issue[description]=Insert your question/comment here.


Basics

Layers involved in software execution

Hardware
(CPUs, busses, memory, caches)

OS

C/C++ source code

C/C++ compileras
m

Native program

Java program

Java source code

Java compiler

JVM/native libraries

JIT-
compiled

code

Java source code is also compiled

Java program can execute:

interpreted by Java Virtual Machine (JVM) or

natively after being just-in-time (JIT) compiled by

JVM (AOT compilation also possible)

JVM is a native program

Java program can use native libraries (JNI)

… long way from source code to execution on HW

feedback 8 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 8 (Layers involved in software execution)&issue[description]=Insert your question/comment here.


Basics

Fundamental theorem of software engineering

All problems in computer science can be solved by another level of
indirection

... except for the problem of too many layers of indirection.

—David Wheeler

Layers of indirection in today’s systems

Hardware

microcode, ISA

virtual memory, MMU

buses, arbiters

Software

operating system kernel

compiler

language runtime

application frameworks

feedback 9 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 9 (Fundamental theorem of software engineering)&issue[description]=Insert your question/comment here.


Hardware

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 10 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 10 (Outline)&issue[description]=Insert your question/comment here.


Hardware

CPU – principle of operation

CPU

Memory

1. 2. 4.

3.Registers ALU

1 Fetch instruction from memory

2 Fetch data from memory

3 Perform computation

4 Store the result to memory (or register)

C code and machine code

int a, b, r;
void func() {

r = a + b;
}
mov 0x100,%eax ; load a
add 0x104,%eax ; add b
mov %eax,0x108 ; store r

feedback 11 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 11 (CPU -- principle of operation)&issue[description]=Insert your question/comment here.


Hardware

Memory

Source of many performance

problems in today’s

computers

Reason: Memory is slow

compared to CPUs!

Solution: Caching⇒ memory

hierarchy

feedback 12 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 12 (Memory)&issue[description]=Insert your question/comment here.


Hardware

Latencies in computer systems

Event Latency Scaled

1 CPU cycle 0.3 ns 1 s
Level 1 cache access 0.9 ns 3 s
Level 2 cache access 2.8 ns 9 s
Level 3 cache access 12.9 ns 43 s
Main memory access (DRAM, from CPU) 120 ns 6 min
Solid-state disk I/O (flash memory) 50–150 µs 2–6 days
Rotational disk I/O 1–10 ms 1–12 months
Internet: San Francisco to New York 40 ms 4 years
Internet: San Francisco to United Kingdom 81 ms 8 years
Internet: San Francisco to Australia 183 ms 19 years
TCP packet retransmit 1–3 s 105–117 years
OS virtualization (container) system reboot 4 s 423 years
SCSI command timeout 30 s 3 millennia
HW virtualization system reboot 40 s 4 millennia
Physical server system reboot 5 m 32 millenia

feedback 13 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 13 (Latencies in computer systems)&issue[description]=Insert your question/comment here.


Hardware

Computer performance and laws of physics

What distance does light travel in vacuum during a clock cycle of a

3GHz CPU?

10 cm

Speed of light in silicon is even slower.

Each gate delays the electric signal a bit.

It’s already difficult to pass the information quickly from one side of the chip to another.

The layers between source code and hardware make it difficult to understand how the

hardware is actually “used”.

feedback 14 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 14 (Computer performance and laws of physics)&issue[description]=Insert your question/comment here.


Hardware

Example: Intel-based system (single socket, 2009)

Intel’s P55 platform
Source: ArsTechnica

Lynnfield CPU
Source: Intel

feedback 15 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 15 (Example: Intel-based system (single socket, 2009))&issue[description]=Insert your question/comment here.


Making the hardware faster

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 16 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 16 (Outline)&issue[description]=Insert your question/comment here.


Making the hardware faster

Making the hardware faster
… and more tricky to use efficiently from software

Hardware designers intensively optimize their hardware

These optimizations improve performance in common (average) cases

Using the HW in “uncommon” ways can drastically degrade the performance

The layers between source code and hardware complicate understanding how is the

hardware actually “used”

What are the features that can be problematic from performance point of view?

We will look at them in more detail in the rest of the lectures.

feedback 17 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 17 (Making the hardware faster)&issue[description]=Insert your question/comment here.


Making the hardware faster » Caches

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 18 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 18 (Outline)&issue[description]=Insert your question/comment here.


Making the hardware faster » Caches

Caches

Principle

Smaller but faster memory

Take advantage of spacial and temporal locality

of memory accesses performed by the code.

Problems

Random Access Memory (RAM) is no longer

RAM from performance point of view

Management of multiple copies of a single

data…

(known as cache coherence)

feedback 19 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 19 (Caches)&issue[description]=Insert your question/comment here.


Making the hardware faster » Instruction-level parallelism

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 20 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 20 (Outline)&issue[description]=Insert your question/comment here.


Making the hardware faster » Instruction-level parallelism

Pipelining, branch prediction
Branch = if then/else

Branch not taken Branch taken

Example pipeline stages:

1 FI = Fetch instruction

2 DI = Decode instruction

3 CO = Calculate operands

4 FO = Fetch operands

5 EI = Execute instruction

6 WO = Write output (result)

The branch predictor tries to predict the branch target and condition

value (true/false)

If it fails, we pay branch penalty

Here, the branch penalty is a few cycles, but it is much more severe in

case of superscalar CPUs.

feedback 21 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 21 (Pipelining, branch prediction)&issue[description]=Insert your question/comment here.


Making the hardware faster » Instruction-level parallelism

Superscalar CPUs

HW tries to execute several instructions

in parallel.

CPU

Memory

1. 2. 4.

3.Registers ALU

Instruction stream

r = a + b

s = c + d

t = e + f

u = g + h

v = u + i

Superscalar execution

r = a + b; s = c + d; t = e + f

u = g + h

v = u + i

Efficient SW goal: Order instructions in a program to use all

execution units (e.g. ALUs) in parallel

Task for the compiler

Complicates reading of assembler (and debugging)
feedback 22 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 22 (Superscalar CPUs)&issue[description]=Insert your question/comment here.


Making the hardware faster » Instruction-level parallelism

Example: AMD Bulldozer CPU

feedback 23 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 23 (Example: AMD Bulldozer CPU)&issue[description]=Insert your question/comment here.


Making the hardware faster » Task parallelism

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 24 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 24 (Outline)&issue[description]=Insert your question/comment here.


Making the hardware faster » Task parallelism

Multiple CPUs

CPU

Memory

Registers ALU

CPU

Registers ALU

Memory interconnect/arbiter

Computers usually run multiple

programs simultaneously

Let’s execute them simultaneously on

two CPUs

The CPUs can be on

single chip⇒ multi-core

multiple chips⇒ multi-socket

Performance problems: synchronization
Communication between the cores (via shared cache or memory interconnect) is slow

What we mean by communication?
Access to shared data in the memory. Examples:

Mutex – e.g. to ensure mutually exclusive access to shared data structure in memory

synchronized keyword in Java
...feedback 25 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 25 (Multiple CPUs)&issue[description]=Insert your question/comment here.


Making the hardware faster » Task parallelism

Simultaneous multi-threading (SMT)
Hyper-threaded CPU

Registers
Thread 1

Registers

CPU

Memory

Registers
Thread 0 ALU

T
hr

ea
d 

sc
he

du
le

r 
(H

W
)

“Cheaper variant” of parallelism

Duplicate just the registers, not the execution units

(ALU)

Add a HW scheduler to simulate parallel execution

When one HW thread waits for memory, the other

can execute

From SW point of view, SMT looks like a multi-core

CPU

Imperfect instruction-level parallelism (superscalar

CPU) is improved by task-parallelism

Hyper-threading is not popular today due to recent

security related HW bugs.
feedback 26 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 26 (Simultaneous multi-threading (SMT))&issue[description]=Insert your question/comment here.


Making the hardware faster » Task parallelism

Non-Uniform Memory Access (NUMA)

Multi-socket system

Each socket has locally connected

memory

Other sockets access the memory via

inter-socket interconnects (slower, ca

15%)

Software sees all memory

SW (OS) should allocate memory local to

the CPU where it runs, apps could help

Node 0 Node 1 Node 2 Node 3

0 GB 8 GB 16 GB 24 GB 32 GB

←Two possible mappings of memory addresses

to memory nodes

feedback 27 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 27 (Non-Uniform Memory Access (NUMA))&issue[description]=Insert your question/comment here.


Making the hardware faster » Task parallelism

Out-of-order execution

Instruction stream

r = a + b

s = c + d

t = e + f

u = g + h

v = u + i

a and c are not cached, the rest is:

Superscalar, out-of-order execution

t = e + f; u = g + h

r = a + b; s = c + d; v = u + i

From a single CPU point of view, everything

is correct.

Complicates synchronization

Other CPUs can see results of

computations in different order

When order matters?

lock = 1

r = a + b

s = a - b

lock = 0

The above example will likely not work,

because accesses to “lock” may be

reordered.

feedback 28 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 28 (Out-of-order execution)&issue[description]=Insert your question/comment here.


Making the hardware faster » Task parallelism

Embedded heterogeneous systems
Different CPUs/GPUs on a single chip

Source: ARM

feedback 29 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 29 (Embedded heterogeneous systems)&issue[description]=Insert your question/comment here.


Energy

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 30 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 30 (Outline)&issue[description]=Insert your question/comment here.


Energy

Energy efficient software

Today, we no longer want just fast software

We also care about heating and battery life of our mobile

phones

Good news: Fast software is also energy efficient

feedback 31 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 31 (Energy efficient software)&issue[description]=Insert your question/comment here.


Energy

Power consumption of CMOS circuits

Two components:

Static dissipation

leakage current through P-N junctions etc.

higher voltage→ higher static dissipation

Dynamic dissipation

charging and discharging of load capacitance (useful + parasitic)

short-circuit current

Ptotal = Pstatic + Pdyn

feedback 32 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 32 (Power consumption of CMOS circuits)&issue[description]=Insert your question/comment here.


Energy

Dynamic power consumption and gate delay

Charging the parasite capacities needs energy

Power consumption

Pdyn = a · C · Vdd 2 · f

Gate delay

t =
γ · C · Vdd
(Vdd – VT )

2
≈ 1

Vdd

Low power⇒ slow

feedback 33 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 33 (Dynamic power consumption and gate delay)&issue[description]=Insert your question/comment here.


Energy

Methods to reduce power/energy consumption

use better technology/smaller gates (HW engineers)

use better placing and routing on the chip (HW engineers)

reduce power supply VDD and/or frequency = Dynamic voltage and frequency scaling
(OS job – apps can help)

raising it back takes time (ramp-up latency)

deciding optimal sleep state to take requires knowing the future

recent Android versions have API for “predicting future”

reduce activity (clock gating = switch off parts of the chip that are not used) [job for OS

and HW, apps can help]

use better algorithms and/or data structures (SW engineers)

feedback 34 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 34 (Methods to reduce power/energy consumption)&issue[description]=Insert your question/comment here.


C/C++ compilers intro

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster

Caches

Instruction-level parallelism

Task parallelism

5 Energy

6 C/C++ compilers intro

feedback 35 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 35 (Outline)&issue[description]=Insert your question/comment here.


C/C++ compilers intro

C/C++ compiler

Generates native code from C/C++ source code

Popular compilers: GCC, Clang (LLVM), icc, MSVC, …

Perform many “optimization passes”

Those will be covered in a separate lecture

For now, very brief overview of what you might need today

feedback 36 / 37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 36 (C/C++ compiler)&issue[description]=Insert your question/comment here.


C/C++ compilers intro

Compiler flags (gcc, clang)

Documentation is your friend:

Command (p)info gcc
https://gcc.gnu.org/onlinedocs/
Clang’s flags are mostly compatible with

gcc

Generate debugging information: -g
Optimization level: -O0, -O1, -O2, -O3, -Os
(size), -Og (debugging)

-O2 is considered “safe”, -O3 may be buggy
Individual optimization passes:

-free-ccp, -fast-math,
-fomit-frame-pointer,
-free-vectorize, ...
Find out which optimizations passes are

active for given optimization level:

g++ -Q -O2 --help=optimizers

Code generation

-fpic, -fpack-struct, -fshort-enums
Machine dependent:

Generate instructions for given

micro-architecture:

-march=haswell, -march=skylake (will
not run on older hardware)

Use only “older” instructions, but schedule

them for the given µarch:

-mtune=haswell, -mtune=native,
-m32, -minline-all-stringops, ...

feedback 37 / 37

https://gcc.gnu.org/onlinedocs/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 37 (Compiler flags (gcc, clang))&issue[description]=Insert your question/comment here.

	About the course
	Basics
	Hardware
	Making the hardware faster
	Caches
	Instruction-level parallelism
	Task parallelism

	Energy
	C/C++ compilers intro

