B4M36ESW: Efficient software

Lecture 1: Introduction

Michal Sojka

michal.sojka@cvut.cz

UNIVERSITY
IN PRAGUE

<« |CTU
Rt

February 17, 2025

About the course

Outline

About the course

feedback 2/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 2 (Outline)&issue[description]=Insert your question/comment here.

About the course

About this course

https://esw.pages.fel.cvut.cz/

Michal Sojka C/C++ (or Rust),
embedded systems,
operating systems

David Sislak Java, servers, ...

feedback

m Writing fast programs

m Single (multi-core) computer, no distributed systems/cloud

m Interaction between software and hardware

m Programming languages: no runtime (C/C++/Rust), with
runtime (Java)

m How general concepts apply to programs in different
programming languages i.e. how to use hardware

efficiently from C/C++/Rust and Java
m The course is not about comparing C/C++/Rust with Java,

m but you should be able to make this comparison yourself at
the end.

3/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 3 (About this course)&issue[description]=Insert your question/comment here.

About the course

Grading

m Exercises
m 8 small tasks
m semestral work (implemented in any programming language)
m Maximum 60 points
® Minimum 30 points
m Exam
m Written test: max. 30 points
m Voluntary oral exam: 10 points
® Minimum: 20 points

feedback 4/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 4 (Grading)&issue[description]=Insert your question/comment here.

About the course
Lectures

m Slides accompany lectures, they are not self-standing documents.
m We would like to get your feedback:
m questions (even stupid)
m typos notifications
B error reports
..
Please use the feedback link on every slide or file the issue directly at
https://gitlab.fel.cvut.cz/esw/lectures/issues/new.

feedback 5/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 5 (Lectures)&issue[description]=Insert your question/comment here.
https://gitlab.fel.cvut.cz/esw/lectures/issues/new
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 5 (Lectures)&issue[description]=Insert your question/comment here.

Basics

Outline

Basics

feedback 6/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 6 (Outline)&issue[description]=Insert your question/comment here.

Basics

Efficient software

m There is no theory of how to write efficient software
m Writing efficient software is about:
m Knowledge of all layers involved
m Experience in knowing when and how performance can be a problem
m Skill in detecting and zooming in on the problems
m A good dose of common sense
m Best practices

m Patterns that occur regularly
m Typical mistakes

feedback 7137

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 7 (Efficient software)&issue[description]=Insert your question/comment here.

Basics

Layers involved in software execution

C/C++ source code I

£
ﬂ C/C++ compiler

Native program

0S

Hardware
(CPUs, busses, memory, caches)

feedback

m In the end, everything is executed by hardware

m Majority of this course is about how to tailor the
code to use the hardware efficiently

m C/C++ source code is transformed into native
(machine) code by the compiler

m Compiler tries to optimize the generated code
m Optimizations are often only heuristics

m Native code is executed directly by HW or invokes
OS services

8/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 8 (Layers involved in software execution)&issue[description]=Insert your question/comment here.

Basics

Layers involved in software execution

Java source code

| m Java source code is also compiled

Java compiler

| = Java program can execute:

m interpreted by Java Virtual Machine (JVM) or

JIT-
compiled
code

Java program

JVM/native libraries

m natively after being just-in-time (JIT) compiled by
JVM (AOT compilation also possible)

m JVMis a native program
m Java program can use native libraries (JNI)
m ... long way from source code to execution on HW

0S

Hardware
(CPUs, busses, memory, caches)

feedback

8/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 8 (Layers involved in software execution)&issue[description]=Insert your question/comment here.

Basics

Fundamental theorem of software engineering

All problems in computer science can be solved by another level of
indirection

... except for the problem of too many layers of indirection.

—David Wheeler
Layers of indirection in today’s systems
Hardware Software
m microcode, ISA m operating system kernel
m virtual memory, MMU m compiler
m buses, arbiters m language runtime

m application frameworks

feedback 9/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 9 (Fundamental theorem of software engineering)&issue[description]=Insert your question/comment here.

Hardware

Outline

Hardware

feedback 10/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 10 (Outline)&issue[description]=Insert your question/comment here.

CPU - principle of operation

C PU Fetch instruction from memory

Fetch data from memory

Perform computation

Registers | 3. Store the result to memory (or register)

C code and machine code

“\ int a, b, r;

void func() {

1. 2. 4. r =a+ b;
Y_
mov 0x100,%eax ; load a
Memory add 0x104,%eax ; add b
mov %eax,0x108 ; store r

feeédback 11/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 11 (CPU -- principle of operation)&issue[description]=Insert your question/comment here.

Hardware

Memory

Actese Time staging m Source of many performance

Cost Xfer Unit

CPU Registers Upper Level problems in today’s

100s Bytes .
300 - 500 ps (0.3-0.5 ns) Instr. Operands 5_’;’%",‘{;’5'“""” faster computers

L1 and L2 Cache .
10s-100s K Bytes Block cache cntl m Reason: Memory is slow
~1ns-~10ns oCcks 32-64 bytes
$1000s/ GByte L2 Cache compared to CPUs!
cache cntl . .
Wain Memory Blocks 64-128 bytes m Solution: Caching = memory
80ns- 2001 I Memory | .
~$100/ GByte os hierarchy
I Pages 4K-8K bytes
Disk
10s T Bytes, 10 i
R LT |
I Files :‘sl;a;‘/:gerator
. Larger
ape
infinite | Tape | Lower Level
~$1/GByte

feedback 12/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 12 (Memory)&issue[description]=Insert your question/comment here.

Hardware

Latencies in computer systems

Event Latency Scaled
1 CPU cycle 0.3ns 1s
Level 1 cache access 0.9ns 3s
Level 2 cache access 2.8ns 9s
Level 3 cache access 12.9ns 43s
Main memory access (DRAM, from CPU) 120 ns 6 min
Solid-state disk I/0 (flash memory) 50-150 ps 2-6 days
Rotational disk 1/0 1-10ms | 1-12 months
Internet: San Francisco to New York 40 ms 4 years
Internet: San Francisco to United Kingdom 81 ms 8 years
Internet: San Francisco to Australia 183 ms 19 years
TCP packet retransmit 1-3s | 105-117 years
0S virtualization (container) system reboot 4s 423 years
SCSI command timeout 30s 3 millennia
HW virtualization system reboot 40 s 4 millennia
Physical server system reboot 5m 32 millenia

feedback

13/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 13 (Latencies in computer systems)&issue[description]=Insert your question/comment here.

Hardware
Computer performance and laws of physics

What distance does light travel in vacuum during a clock cycle of a
3 GHz CPU?

m 10cm

m Speed of light in silicon is even slower.

m Each gate delays the electric signal a bit.

m It’s already difficult to pass the information quickly from one side of the chip to another.

m The layers between source code and hardware make it difficult to understand how the
hardware is actually “used”.

feedback 14/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 14 (Computer performance and laws of physics)&issue[description]=Insert your question/comment here.

Hardware

Example: Intel-based system (single socket, 2009)

Memeory Bus cPU PCle x16

Lynnfield CPU

Source: Intel

Intel’s P55 platform

Source: ArsTechnica

feedback 15/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 15 (Example: Intel-based system (single socket, 2009))&issue[description]=Insert your question/comment here.

Making the hardware faster

Outline

Making the hardware faster
m Caches
m Instruction-level parallelism
m Task parallelism

feedback 16/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 16 (Outline)&issue[description]=Insert your question/comment here.

Making the hardware faster

Making the hardware faster

... and more tricky to use efficiently from software

m Hardware designers intensively optimize their hardware
m These optimizations improve performance in common (average) cases
m Using the HW in “uncommon” ways can drastically degrade the performance

m The layers between source code and hardware complicate understanding how is the
hardware actually “used”

m What are the features that can be problematic from performance point of view?
m We will look at them in more detail in the rest of the lectures.

feedback 17/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 17 (Making the hardware faster)&issue[description]=Insert your question/comment here.

Making the hardware faster » Caches

Outline

Making the hardware faster
m Caches

feedback 18/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 18 (Outline)&issue[description]=Insert your question/comment here.

Making the hardware faster » Caches

Caches

m Principle

Capacity

m Smaller but faster memory o N L NI
m Take advantage of spacial and temporal locality e e e,
of memory accesses performed by the code. ;”;mf -
m Problems . .
m Random Access Memory (RAM) is no longer - mslkpages | B
RAM from performance point of view e [Fies =
m Management of multiple copies of a single ;w | Tape Lower Level
data... ik

(known as cache coherence)

feedback

Shared L3 Cache:
|
15

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 19 (Caches)&issue[description]=Insert your question/comment here.

Making the hardware faster » Instruction-level parallelism

Outline

Making the hardware faster

m Instruction-level parallelism

feedback 20/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 20 (Outline)&issue[description]=Insert your question/comment here.

Making the hardware faster » Instruction-level parallelism

Pipelining, branch prediction

Branch = if then/else

Branch not taken Branch taken

Branch Penalty

Lufz]3]4]s]6]7]8]o|w]|u]rz|3]4

Instruction 5 Instruction 5

FIi_DLi CO FOI_EI | WQ

Instruction 6 Instruction 6

o1 e ELYG SI — o i
hmomamonomamd R 1 '

R 1 '

R H]

ion 2 I ion 2 1 ;
R 1 '

Vo R H '
imioiicolpolEiwgt | 4 4 i H]

on3 mipicoipoleivgt o1 s '
iR] '

R ' '

: colpot eiwgl b b H]

Instruction 4 e s Instruction 4 : :
R 1 '

; colyoleiwol 11 H]

b 1 '

Vo 1 '

b 1 '

Pl H]

1 ;

1 '

H '

H]

FI | DIi €O, FO| El

Instruction 7 Instruction 7

FIi DI €O FO | EL| WO,

Instruction 15

Instruction 8

LU P LIRP LY
' g

FI, DLL COL O EILL WO
0

Instruction 9 Instruction 16

Examplé pipeline stages:

E Fl = Fetch instruction m The branch predictor tries to predict the branch target and condition
DI = Decode instruction value (true/false)

CO = Calculate operands m If it fails, we pay branch penalty

FO = Fetch operands m Here, the branch penalty is a few cycles, but it is much more severe in
El = Execute instruction case of superscalar CPUs.

reed@ WO = Write output (result) o1/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 21 (Pipelining, branch prediction)&issue[description]=Insert your question/comment here.

Making the hardware faster » Instruction-level parallelism

Superscalar CPUs

HW tries to execute several instructions -
in parallel. Instruction stream

r=a+b
s=c+d
t=e +f
u=g+h
V=U+i

3
3

Superscalar execution

A r=a+b;s=c+d;t=e+f
1. 2 4, u=g+h

' V=U+i

m Efficient SW goal: Order instructions in a program to use all

M €emo ry execution units (e.g. ALUs) in parallel

W Task for the compiler
B Complicates reading of assembler (and debugging)
feedback 22/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 22 (Superscalar CPUs)&issue[description]=Insert your question/comment here.

Making the hardware faster » Instruction-level parallelism

Example: AMD Bulldozer CPU

Module block
(incl. 2 cores)

L1 instruction cache
64KB two-way

S [|
Z 2%
C

(Thread Thread
irce Resource

Monitor

1 g acne

16KB fouir-wa)

L2 Data Cache
Core Interface Unit 204688 ey

feedback 23/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 23 (Example: AMD Bulldozer CPU)&issue[description]=Insert your question/comment here.

Making the hardware faster » Task parallelism

Outline

Making the hardware faster

m Task parallelism

feedback 24/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 24 (Outline)&issue[description]=Insert your question/comment here.

Making the hardware faster » Task parallelism

Multiple CPUs

C C

PU PU
\I \I m Computers usually run multiple
Registers H Registers H

programs simultaneously

m Let’s execute them simultaneously on

A y A L 4 two CPUs

| Memory intergonnect/arbiter | = The CPUs can be on
B single chip = multi-core
Memory B multiple chips = multi-socket

m Performance problems: synchronization
m Communication between the cores (via shared cache or memory interconnect) is slow
m What we mean by communication?
m Access to shared data in the memory. Examples:
m Mutex - e.g. to ensure mutually exclusive access to shared data structure in memory
B synchronized keyword in Java
feedback .. 25/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 25 (Multiple CPUs)&issue[description]=Insert your question/comment here.

Making the hardware faster » Task parallelism

Simultaneous multi-threading (SMT)
Hyper-threaded CPU

CPU m “Cheaper variant” of parallelism
liRegisters —= m Duplicate just the registers, not the execution units
Thread1 [— < (ALU)
Registers | — % m Add a HW scheduler to simulate parallel execution
Thread 0 3 m When one HW thread waits for memory, the other
= can execute
| * m From SW point of view, SMT looks like a multi-core
' CPU
Memory m Imperfect instruction-level parallelism (superscalar

CPU) is improved by task-parallelism

m Hyper-threading is not popular today due to recent
security related HW bugs.

feedback 26/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 26 (Simultaneous multi-threading (SMT))&issue[description]=Insert your question/comment here.

Making the hardware faster » Task parallelism

Non-Uniform Memory Access (NUMA)

m Multi-socket system

m Each socket has locally connected
memory

m Other sockets access the memory via
inter-socket interconnects (slower, ca
15%)

m Software sees all memory

m SW (OS) should allocate memory local to
the CPU where it runs, apps could help

Msmnry

Memory

0GB 8GB 16 GB 24 GB 32GB

«Two possible mappings of memory addresses

feedback 27/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 27 (Non-Uniform Memory Access (NUMA))&issue[description]=Insert your question/comment here.

Making the hardware faster » Task parallelism

Out-of-order execution

Instruction stream

m Complicates synchronization

r=a+b
S= C: d m Other CPUs can see results of
t=e+f computations in different order
3 _ 3 I ,h When order matters?

lock = 1
a and c are not cached, the rest is: r=a+b
Superscalar, out-of-order execution s=a-b

lock =0

t=e+f,u=g+h

r—a+b's=c+d'v=u+i The above example will likely not work,

because accesses to “lock” may be
From a single CPU point of view, everything reordered.

is correct.
feedback 28/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 28 (Out-of-order execution)&issue[description]=Insert your question/comment here.

Making the hardware faster » Task parallelism

Embedded heterogeneous systems
Different CPUs/GPUs on a single chip

10 Coherent Masters

2K-4K. Mali™-T760 GPU
and Video M place]
Sub-system

L2 Cache

[TZC-400 |
I DMC J To Peripheral Interconnect
DDR/LFODR
Source: ARM
feedback

29/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 29 (Embedded heterogeneous systems)&issue[description]=Insert your question/comment here.

Energy
Outline

Energy

feedback 30/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 30 (Outline)&issue[description]=Insert your question/comment here.

Energy efficient software

SAMSUNG

m Today, we no longer want just fast software

m We also care about heating and battery life of our mobile
phones

m Good news: Fast software is also energy efficient

feedback

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 31 (Energy efficient software)&issue[description]=Insert your question/comment here.

Energy

Power consumption of CMQOS circuits

Two components:
m Static dissipation

m leakage current through P-N junctions etc.
m higher voltage — higher static dissipation

m Dynamic dissipation

m charging and discharging of load capacitance (useful + parasitic)
m short-circuit current

Piotai = Pstatic + P, dyn

feedback 32/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 32 (Power consumption of CMOS circuits)&issue[description]=Insert your question/comment here.

Energy

Dynamic power consumption and gate delay

Charging the parasite capacities needs energy

Poyn=a-C - Vgg? - f to 1 C Vg 1
(Vag = V72 Vad

Low power = slow

Normalized values

feedback

Energy x delay

Energy

Van

33/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 33 (Dynamic power consumption and gate delay)&issue[description]=Insert your question/comment here.

Methods to reduce power/energy consumption

m use better technology/smaller gates (HW engineers)

m use better placing and routing on the chip (HW engineers)

m reduce power supply Vpp and/or frequency = Dynamic voltage and frequency scaling
(OS job - apps can help)

m raising it back takes time (ramp-up latency)
m deciding optimal sleep state to take requires knowing the future
m recent Android versions have API for “predicting future”

m reduce activity (clock gating = switch off parts of the chip that are not used) [job for OS
and HW, apps can help]

m use better algorithms and/or data structures (SW engineers)

feedback 34/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 34 (Methods to reduce power/energy consumption)&issue[description]=Insert your question/comment here.

C/C++ compilers intro

Outline

B C/C++ compilers intro

feedback 35/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 35 (Outline)&issue[description]=Insert your question/comment here.

C/C++ compilers intro
C/C++ compiler

m Generates native code from C/C++ source code
m Popular compilers: GCC, Clang (LLVM), icc, MSVC, ...

m Perform many “optimization passes”
m Those will be covered in a separate lecture

m For now, very brief overview of what you might need today

feedback 36/37

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 36 (C/C++ compiler)&issue[description]=Insert your question/comment here.

C/C++ compilers intro

Compiler flags (gcc, clang)

m Documentation is your friend:
m Command (p)info gcc
m https://gcc.gnu.org/onlinedocs/
m Clang’s flags are mostly compatible with
gce

m Generate debugging information: -g
m Optimization level: -00, -01, -02, -03, -0s
(size), -0g (debugging)
m -02is considered “safe”, -03 may be buggy
m Individual optimization passes:
-free-ccp, -fast-math,
-fomit-frame-pointer,
-free-vectorize, ...
m Find out which optimizations passes are
active for given optimization level:
g++ -Q -02 --help=optimizers

feedback

m Code generation
B -fpic, -fpack-struct, -fshort-enums
® Machine dependent:

B Generate instructions for given
micro-architecture:

-march=haswell, -march=skylake (will
not run on older hardware)

B Use only “older” instructions, but schedule
them for the given parch:
-mtune=haswell, -mtune=native,

B -m32, -minline-all-stringops, ...

37/37

https://gcc.gnu.org/onlinedocs/
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture esw-intro, slide 37 (Compiler flags (gcc, clang))&issue[description]=Insert your question/comment here.

	About the course
	Basics
	Hardware
	Making the hardware faster
	Caches
	Instruction-level parallelism
	Task parallelism

	Energy
	C/C++ compilers intro

